This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a multiply-add of two numerals M and N against a fixed multiplicand P (no carry). (Contributed by AV, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decrmanc.a | ⊢ 𝐴 ∈ ℕ0 | |
| decrmanc.b | ⊢ 𝐵 ∈ ℕ0 | ||
| decrmanc.n | ⊢ 𝑁 ∈ ℕ0 | ||
| decrmanc.m | ⊢ 𝑀 = ; 𝐴 𝐵 | ||
| decrmanc.p | ⊢ 𝑃 ∈ ℕ0 | ||
| decrmanc.e | ⊢ ( 𝐴 · 𝑃 ) = 𝐸 | ||
| decrmanc.f | ⊢ ( ( 𝐵 · 𝑃 ) + 𝑁 ) = 𝐹 | ||
| Assertion | decrmanc | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ; 𝐸 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decrmanc.a | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decrmanc.b | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decrmanc.n | ⊢ 𝑁 ∈ ℕ0 | |
| 4 | decrmanc.m | ⊢ 𝑀 = ; 𝐴 𝐵 | |
| 5 | decrmanc.p | ⊢ 𝑃 ∈ ℕ0 | |
| 6 | decrmanc.e | ⊢ ( 𝐴 · 𝑃 ) = 𝐸 | |
| 7 | decrmanc.f | ⊢ ( ( 𝐵 · 𝑃 ) + 𝑁 ) = 𝐹 | |
| 8 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 9 | 3 | dec0h | ⊢ 𝑁 = ; 0 𝑁 |
| 10 | 1 5 | nn0mulcli | ⊢ ( 𝐴 · 𝑃 ) ∈ ℕ0 |
| 11 | 10 | nn0cni | ⊢ ( 𝐴 · 𝑃 ) ∈ ℂ |
| 12 | 11 | addridi | ⊢ ( ( 𝐴 · 𝑃 ) + 0 ) = ( 𝐴 · 𝑃 ) |
| 13 | 12 6 | eqtri | ⊢ ( ( 𝐴 · 𝑃 ) + 0 ) = 𝐸 |
| 14 | 1 2 8 3 4 9 5 13 7 | decma | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ; 𝐸 𝐹 |