This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by AV, 6-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decmul1.p | ⊢ 𝑃 ∈ ℕ0 | |
| decmul1.a | ⊢ 𝐴 ∈ ℕ0 | ||
| decmul1.b | ⊢ 𝐵 ∈ ℕ0 | ||
| decmul1.n | ⊢ 𝑁 = ; 𝐴 𝐵 | ||
| decmul1.0 | ⊢ 𝐷 ∈ ℕ0 | ||
| decmul1c.e | ⊢ 𝐸 ∈ ℕ0 | ||
| decmul1c.c | ⊢ ( ( 𝐴 · 𝑃 ) + 𝐸 ) = 𝐶 | ||
| decmul1c.2 | ⊢ ( 𝐵 · 𝑃 ) = ; 𝐸 𝐷 | ||
| Assertion | decmul1c | ⊢ ( 𝑁 · 𝑃 ) = ; 𝐶 𝐷 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decmul1.p | ⊢ 𝑃 ∈ ℕ0 | |
| 2 | decmul1.a | ⊢ 𝐴 ∈ ℕ0 | |
| 3 | decmul1.b | ⊢ 𝐵 ∈ ℕ0 | |
| 4 | decmul1.n | ⊢ 𝑁 = ; 𝐴 𝐵 | |
| 5 | decmul1.0 | ⊢ 𝐷 ∈ ℕ0 | |
| 6 | decmul1c.e | ⊢ 𝐸 ∈ ℕ0 | |
| 7 | decmul1c.c | ⊢ ( ( 𝐴 · 𝑃 ) + 𝐸 ) = 𝐶 | |
| 8 | decmul1c.2 | ⊢ ( 𝐵 · 𝑃 ) = ; 𝐸 𝐷 | |
| 9 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 10 | dfdec10 | ⊢ ; 𝐴 𝐵 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) | |
| 11 | 4 10 | eqtri | ⊢ 𝑁 = ( ( ; 1 0 · 𝐴 ) + 𝐵 ) |
| 12 | dfdec10 | ⊢ ; 𝐸 𝐷 = ( ( ; 1 0 · 𝐸 ) + 𝐷 ) | |
| 13 | 8 12 | eqtri | ⊢ ( 𝐵 · 𝑃 ) = ( ( ; 1 0 · 𝐸 ) + 𝐷 ) |
| 14 | 9 1 2 3 11 5 6 7 13 | nummul1c | ⊢ ( 𝑁 · 𝑃 ) = ( ( ; 1 0 · 𝐶 ) + 𝐷 ) |
| 15 | dfdec10 | ⊢ ; 𝐶 𝐷 = ( ( ; 1 0 · 𝐶 ) + 𝐷 ) | |
| 16 | 14 15 | eqtr4i | ⊢ ( 𝑁 · 𝑃 ) = ; 𝐶 𝐷 |