This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Perform a multiply-add of two numerals M and N against a fixed multiplicand P (with carry). (Contributed by AV, 16-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | decrmanc.a | ⊢ 𝐴 ∈ ℕ0 | |
| decrmanc.b | ⊢ 𝐵 ∈ ℕ0 | ||
| decrmanc.n | ⊢ 𝑁 ∈ ℕ0 | ||
| decrmanc.m | ⊢ 𝑀 = ; 𝐴 𝐵 | ||
| decrmanc.p | ⊢ 𝑃 ∈ ℕ0 | ||
| decrmac.f | ⊢ 𝐹 ∈ ℕ0 | ||
| decrmac.g | ⊢ 𝐺 ∈ ℕ0 | ||
| decrmac.e | ⊢ ( ( 𝐴 · 𝑃 ) + 𝐺 ) = 𝐸 | ||
| decrmac.2 | ⊢ ( ( 𝐵 · 𝑃 ) + 𝑁 ) = ; 𝐺 𝐹 | ||
| Assertion | decrmac | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ; 𝐸 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | decrmanc.a | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | decrmanc.b | ⊢ 𝐵 ∈ ℕ0 | |
| 3 | decrmanc.n | ⊢ 𝑁 ∈ ℕ0 | |
| 4 | decrmanc.m | ⊢ 𝑀 = ; 𝐴 𝐵 | |
| 5 | decrmanc.p | ⊢ 𝑃 ∈ ℕ0 | |
| 6 | decrmac.f | ⊢ 𝐹 ∈ ℕ0 | |
| 7 | decrmac.g | ⊢ 𝐺 ∈ ℕ0 | |
| 8 | decrmac.e | ⊢ ( ( 𝐴 · 𝑃 ) + 𝐺 ) = 𝐸 | |
| 9 | decrmac.2 | ⊢ ( ( 𝐵 · 𝑃 ) + 𝑁 ) = ; 𝐺 𝐹 | |
| 10 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 11 | 3 | dec0h | ⊢ 𝑁 = ; 0 𝑁 |
| 12 | 7 | nn0cni | ⊢ 𝐺 ∈ ℂ |
| 13 | 12 | addlidi | ⊢ ( 0 + 𝐺 ) = 𝐺 |
| 14 | 13 | oveq2i | ⊢ ( ( 𝐴 · 𝑃 ) + ( 0 + 𝐺 ) ) = ( ( 𝐴 · 𝑃 ) + 𝐺 ) |
| 15 | 14 8 | eqtri | ⊢ ( ( 𝐴 · 𝑃 ) + ( 0 + 𝐺 ) ) = 𝐸 |
| 16 | 1 2 10 3 4 11 5 6 7 15 9 | decmac | ⊢ ( ( 𝑀 · 𝑃 ) + 𝑁 ) = ; 𝐸 𝐹 |