This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| limsupgre.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| Assertion | limsupgre | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) → 𝐺 : ℝ ⟶ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 2 | limsupgre.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 3 | xrltso | ⊢ < Or ℝ* | |
| 4 | 3 | supex | ⊢ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ V |
| 5 | 4 | a1i | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑘 ∈ ℝ ) → sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ V ) |
| 6 | 1 | a1i | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) → 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ) |
| 7 | 1 | limsupgval | ⊢ ( 𝑎 ∈ ℝ → ( 𝐺 ‘ 𝑎 ) = sup ( ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( 𝐺 ‘ 𝑎 ) = sup ( ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 9 | simpl3 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( lim sup ‘ 𝐹 ) < +∞ ) | |
| 10 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 11 | 2 10 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 12 | zssre | ⊢ ℤ ⊆ ℝ | |
| 13 | 11 12 | sstri | ⊢ 𝑍 ⊆ ℝ |
| 14 | 13 | a1i | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → 𝑍 ⊆ ℝ ) |
| 15 | simpl2 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ℝ ) | |
| 16 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 17 | fss | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ ℝ ⊆ ℝ* ) → 𝐹 : 𝑍 ⟶ ℝ* ) | |
| 18 | 15 16 17 | sylancl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 19 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 20 | 19 | a1i | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → +∞ ∈ ℝ* ) |
| 21 | 1 | limsuplt | ⊢ ( ( 𝑍 ⊆ ℝ ∧ 𝐹 : 𝑍 ⟶ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( lim sup ‘ 𝐹 ) < +∞ ↔ ∃ 𝑛 ∈ ℝ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) |
| 22 | 14 18 20 21 | syl3anc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( ( lim sup ‘ 𝐹 ) < +∞ ↔ ∃ 𝑛 ∈ ℝ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) |
| 23 | 9 22 | mpbid | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ∃ 𝑛 ∈ ℝ ( 𝐺 ‘ 𝑛 ) < +∞ ) |
| 24 | fzfi | ⊢ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ∈ Fin | |
| 25 | 15 | adantr | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) → 𝐹 : 𝑍 ⟶ ℝ ) |
| 26 | elfzuz | ⊢ ( 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 27 | 26 2 | eleqtrrdi | ⊢ ( 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
| 28 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ ∧ 𝑚 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑚 ) ∈ ℝ ) | |
| 29 | 25 27 28 | syl2an | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ) → ( 𝐹 ‘ 𝑚 ) ∈ ℝ ) |
| 30 | 29 | ralrimiva | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) → ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ∈ ℝ ) |
| 31 | fimaxre3 | ⊢ ( ( ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ∈ Fin ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ∈ ℝ ) → ∃ 𝑟 ∈ ℝ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) | |
| 32 | 24 30 31 | sylancr | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) |
| 33 | simpr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → 𝑎 ∈ ℝ ) | |
| 34 | 33 | ad2antrr | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → 𝑎 ∈ ℝ ) |
| 35 | 1 | limsupgf | ⊢ 𝐺 : ℝ ⟶ ℝ* |
| 36 | 35 | ffvelcdmi | ⊢ ( 𝑎 ∈ ℝ → ( 𝐺 ‘ 𝑎 ) ∈ ℝ* ) |
| 37 | 34 36 | syl | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → ( 𝐺 ‘ 𝑎 ) ∈ ℝ* ) |
| 38 | simprl | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → 𝑟 ∈ ℝ ) | |
| 39 | 16 38 | sselid | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → 𝑟 ∈ ℝ* ) |
| 40 | simprl | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) → 𝑛 ∈ ℝ ) | |
| 41 | 40 | adantr | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → 𝑛 ∈ ℝ ) |
| 42 | 35 | ffvelcdmi | ⊢ ( 𝑛 ∈ ℝ → ( 𝐺 ‘ 𝑛 ) ∈ ℝ* ) |
| 43 | 41 42 | syl | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ* ) |
| 44 | 39 43 | ifcld | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 45 | 19 | a1i | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → +∞ ∈ ℝ* ) |
| 46 | 40 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → 𝑛 ∈ ℝ ) |
| 47 | 13 | a1i | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → 𝑍 ⊆ ℝ ) |
| 48 | 47 | sselda | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ℝ ) |
| 49 | 43 | xrleidd | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → ( 𝐺 ‘ 𝑛 ) ≤ ( 𝐺 ‘ 𝑛 ) ) |
| 50 | 18 | ad2antrr | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 51 | 1 | limsupgle | ⊢ ( ( ( 𝑍 ⊆ ℝ ∧ 𝐹 : 𝑍 ⟶ ℝ* ) ∧ 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) ∈ ℝ* ) → ( ( 𝐺 ‘ 𝑛 ) ≤ ( 𝐺 ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ 𝑍 ( 𝑛 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 52 | 47 50 41 43 51 | syl211anc | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → ( ( 𝐺 ‘ 𝑛 ) ≤ ( 𝐺 ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ 𝑍 ( 𝑛 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 53 | 49 52 | mpbid | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → ∀ 𝑖 ∈ 𝑍 ( 𝑛 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑛 ) ) ) |
| 54 | 53 | r19.21bi | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑛 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑛 ) ) ) |
| 55 | 54 | imp | ⊢ ( ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ≤ 𝑖 ) → ( 𝐹 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑛 ) ) |
| 56 | 46 42 | syl | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ* ) |
| 57 | 39 | adantr | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → 𝑟 ∈ ℝ* ) |
| 58 | xrmax1 | ⊢ ( ( ( 𝐺 ‘ 𝑛 ) ∈ ℝ* ∧ 𝑟 ∈ ℝ* ) → ( 𝐺 ‘ 𝑛 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) | |
| 59 | 56 57 58 | syl2anc | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) |
| 60 | 50 | ffvelcdmda | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑖 ) ∈ ℝ* ) |
| 61 | 44 | adantr | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ∈ ℝ* ) |
| 62 | xrletr | ⊢ ( ( ( 𝐹 ‘ 𝑖 ) ∈ ℝ* ∧ ( 𝐺 ‘ 𝑛 ) ∈ ℝ* ∧ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ∈ ℝ* ) → ( ( ( 𝐹 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) ) | |
| 63 | 60 56 61 62 | syl3anc | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑛 ) ∧ ( 𝐺 ‘ 𝑛 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 64 | 59 63 | mpan2d | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑛 ) → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 65 | 64 | adantr | ⊢ ( ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ≤ 𝑖 ) → ( ( 𝐹 ‘ 𝑖 ) ≤ ( 𝐺 ‘ 𝑛 ) → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 66 | 55 65 | mpd | ⊢ ( ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 ≤ 𝑖 ) → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) |
| 67 | fveq2 | ⊢ ( 𝑚 = 𝑖 → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑖 ) ) | |
| 68 | 67 | breq1d | ⊢ ( 𝑚 = 𝑖 → ( ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ↔ ( 𝐹 ‘ 𝑖 ) ≤ 𝑟 ) ) |
| 69 | simprr | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) | |
| 70 | 69 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑖 ≤ 𝑛 ) → ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) |
| 71 | simpr | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) | |
| 72 | 71 2 | eleqtrdi | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 73 | 41 | flcld | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → ( ⌊ ‘ 𝑛 ) ∈ ℤ ) |
| 74 | 73 | adantr | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( ⌊ ‘ 𝑛 ) ∈ ℤ ) |
| 75 | elfz5 | ⊢ ( ( 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ ( ⌊ ‘ 𝑛 ) ∈ ℤ ) → ( 𝑖 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ↔ 𝑖 ≤ ( ⌊ ‘ 𝑛 ) ) ) | |
| 76 | 72 74 75 | syl2anc | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑖 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ↔ 𝑖 ≤ ( ⌊ ‘ 𝑛 ) ) ) |
| 77 | 11 71 | sselid | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ ℤ ) |
| 78 | flge | ⊢ ( ( 𝑛 ∈ ℝ ∧ 𝑖 ∈ ℤ ) → ( 𝑖 ≤ 𝑛 ↔ 𝑖 ≤ ( ⌊ ‘ 𝑛 ) ) ) | |
| 79 | 46 77 78 | syl2anc | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑖 ≤ 𝑛 ↔ 𝑖 ≤ ( ⌊ ‘ 𝑛 ) ) ) |
| 80 | 76 79 | bitr4d | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑖 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ↔ 𝑖 ≤ 𝑛 ) ) |
| 81 | 80 | biimpar | ⊢ ( ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑖 ≤ 𝑛 ) → 𝑖 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ) |
| 82 | 68 70 81 | rspcdva | ⊢ ( ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑖 ≤ 𝑛 ) → ( 𝐹 ‘ 𝑖 ) ≤ 𝑟 ) |
| 83 | xrmax2 | ⊢ ( ( ( 𝐺 ‘ 𝑛 ) ∈ ℝ* ∧ 𝑟 ∈ ℝ* ) → 𝑟 ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) | |
| 84 | 43 39 83 | syl2anc | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → 𝑟 ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) |
| 85 | 84 | adantr | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → 𝑟 ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) |
| 86 | xrletr | ⊢ ( ( ( 𝐹 ‘ 𝑖 ) ∈ ℝ* ∧ 𝑟 ∈ ℝ* ∧ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ∈ ℝ* ) → ( ( ( 𝐹 ‘ 𝑖 ) ≤ 𝑟 ∧ 𝑟 ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) ) | |
| 87 | 60 57 61 86 | syl3anc | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑖 ) ≤ 𝑟 ∧ 𝑟 ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 88 | 85 87 | mpan2d | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( ( 𝐹 ‘ 𝑖 ) ≤ 𝑟 → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 89 | 88 | adantr | ⊢ ( ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑖 ≤ 𝑛 ) → ( ( 𝐹 ‘ 𝑖 ) ≤ 𝑟 → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 90 | 82 89 | mpd | ⊢ ( ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑖 ≤ 𝑛 ) → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) |
| 91 | 46 48 66 90 | lecasei | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) |
| 92 | 91 | a1d | ⊢ ( ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) ∧ 𝑖 ∈ 𝑍 ) → ( 𝑎 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 93 | 92 | ralrimiva | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → ∀ 𝑖 ∈ 𝑍 ( 𝑎 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 94 | 1 | limsupgle | ⊢ ( ( ( 𝑍 ⊆ ℝ ∧ 𝐹 : 𝑍 ⟶ ℝ* ) ∧ 𝑎 ∈ ℝ ∧ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ∈ ℝ* ) → ( ( 𝐺 ‘ 𝑎 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ↔ ∀ 𝑖 ∈ 𝑍 ( 𝑎 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 95 | 47 50 34 44 94 | syl211anc | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → ( ( 𝐺 ‘ 𝑎 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ↔ ∀ 𝑖 ∈ 𝑍 ( 𝑎 ≤ 𝑖 → ( 𝐹 ‘ 𝑖 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
| 96 | 93 95 | mpbird | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → ( 𝐺 ‘ 𝑎 ) ≤ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) ) |
| 97 | 38 | ltpnfd | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → 𝑟 < +∞ ) |
| 98 | simplrr | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → ( 𝐺 ‘ 𝑛 ) < +∞ ) | |
| 99 | breq1 | ⊢ ( 𝑟 = if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) → ( 𝑟 < +∞ ↔ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) < +∞ ) ) | |
| 100 | breq1 | ⊢ ( ( 𝐺 ‘ 𝑛 ) = if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) → ( ( 𝐺 ‘ 𝑛 ) < +∞ ↔ if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) < +∞ ) ) | |
| 101 | 99 100 | ifboth | ⊢ ( ( 𝑟 < +∞ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) → if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) < +∞ ) |
| 102 | 97 98 101 | syl2anc | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → if ( ( 𝐺 ‘ 𝑛 ) ≤ 𝑟 , 𝑟 , ( 𝐺 ‘ 𝑛 ) ) < +∞ ) |
| 103 | 37 44 45 96 102 | xrlelttrd | ⊢ ( ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) ∧ ( 𝑟 ∈ ℝ ∧ ∀ 𝑚 ∈ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 ) ≤ 𝑟 ) ) → ( 𝐺 ‘ 𝑎 ) < +∞ ) |
| 104 | 32 103 | rexlimddv | ⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) ∧ ( 𝑛 ∈ ℝ ∧ ( 𝐺 ‘ 𝑛 ) < +∞ ) ) → ( 𝐺 ‘ 𝑎 ) < +∞ ) |
| 105 | 23 104 | rexlimddv | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( 𝐺 ‘ 𝑎 ) < +∞ ) |
| 106 | 8 105 | eqbrtrrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → sup ( ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) < +∞ ) |
| 107 | imassrn | ⊢ ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ⊆ ran 𝐹 | |
| 108 | 15 | frnd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ran 𝐹 ⊆ ℝ ) |
| 109 | 107 108 | sstrid | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ⊆ ℝ ) |
| 110 | 109 16 | sstrdi | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ⊆ ℝ* ) |
| 111 | dfss2 | ⊢ ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ⊆ ℝ* ↔ ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ) | |
| 112 | 110 111 | sylib | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ) |
| 113 | 112 109 | eqsstrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ ) |
| 114 | simpl1 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → 𝑀 ∈ ℤ ) | |
| 115 | flcl | ⊢ ( 𝑎 ∈ ℝ → ( ⌊ ‘ 𝑎 ) ∈ ℤ ) | |
| 116 | 115 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( ⌊ ‘ 𝑎 ) ∈ ℤ ) |
| 117 | 116 | peano2zd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( ( ⌊ ‘ 𝑎 ) + 1 ) ∈ ℤ ) |
| 118 | 117 114 | ifcld | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ ℤ ) |
| 119 | 114 | zred | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → 𝑀 ∈ ℝ ) |
| 120 | 117 | zred | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( ( ⌊ ‘ 𝑎 ) + 1 ) ∈ ℝ ) |
| 121 | max1 | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑎 ) + 1 ) ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ) | |
| 122 | 119 120 121 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ) |
| 123 | eluz2 | ⊢ ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ ℤ ∧ 𝑀 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ) ) | |
| 124 | 114 118 122 123 | syl3anbrc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 125 | 124 2 | eleqtrrdi | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ 𝑍 ) |
| 126 | 15 | fdmd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → dom 𝐹 = 𝑍 ) |
| 127 | 125 126 | eleqtrrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ dom 𝐹 ) |
| 128 | 118 | zred | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ ℝ ) |
| 129 | fllep1 | ⊢ ( 𝑎 ∈ ℝ → 𝑎 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) ) | |
| 130 | 129 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → 𝑎 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) ) |
| 131 | max2 | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( ⌊ ‘ 𝑎 ) + 1 ) ∈ ℝ ) → ( ( ⌊ ‘ 𝑎 ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ) | |
| 132 | 119 120 131 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( ( ⌊ ‘ 𝑎 ) + 1 ) ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ) |
| 133 | 33 120 128 130 132 | letrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → 𝑎 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ) |
| 134 | elicopnf | ⊢ ( 𝑎 ∈ ℝ → ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ ( 𝑎 [,) +∞ ) ↔ ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ ℝ ∧ 𝑎 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ) ) ) | |
| 135 | 134 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ ( 𝑎 [,) +∞ ) ↔ ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ ℝ ∧ 𝑎 ≤ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ) ) ) |
| 136 | 128 133 135 | mpbir2and | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ ( 𝑎 [,) +∞ ) ) |
| 137 | inelcm | ⊢ ( ( if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ dom 𝐹 ∧ if ( 𝑀 ≤ ( ( ⌊ ‘ 𝑎 ) + 1 ) , ( ( ⌊ ‘ 𝑎 ) + 1 ) , 𝑀 ) ∈ ( 𝑎 [,) +∞ ) ) → ( dom 𝐹 ∩ ( 𝑎 [,) +∞ ) ) ≠ ∅ ) | |
| 138 | 127 136 137 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( dom 𝐹 ∩ ( 𝑎 [,) +∞ ) ) ≠ ∅ ) |
| 139 | imadisj | ⊢ ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) = ∅ ↔ ( dom 𝐹 ∩ ( 𝑎 [,) +∞ ) ) = ∅ ) | |
| 140 | 139 | necon3bii | ⊢ ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ≠ ∅ ↔ ( dom 𝐹 ∩ ( 𝑎 [,) +∞ ) ) ≠ ∅ ) |
| 141 | 138 140 | sylibr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ≠ ∅ ) |
| 142 | 112 141 | eqnetrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) |
| 143 | supxrre1 | ⊢ ( ( ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ ∧ ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) ≠ ∅ ) → ( sup ( ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ ↔ sup ( ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) < +∞ ) ) | |
| 144 | 113 142 143 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( sup ( ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ ↔ sup ( ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) < +∞ ) ) |
| 145 | 106 144 | mpbird | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → sup ( ( ( 𝐹 “ ( 𝑎 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ ) |
| 146 | 8 145 | eqeltrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) ∧ 𝑎 ∈ ℝ ) → ( 𝐺 ‘ 𝑎 ) ∈ ℝ ) |
| 147 | 5 6 146 | fmpt2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝐹 : 𝑍 ⟶ ℝ ∧ ( lim sup ‘ 𝐹 ) < +∞ ) → 𝐺 : ℝ ⟶ ℝ ) |