This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| Assertion | limsuplt | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( lim sup ‘ 𝐹 ) < 𝐴 ↔ ∃ 𝑗 ∈ ℝ ( 𝐺 ‘ 𝑗 ) < 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 2 | 1 | limsuple | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ¬ 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ¬ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
| 4 | rexnal | ⊢ ( ∃ 𝑗 ∈ ℝ ¬ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ↔ ¬ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) | |
| 5 | 3 4 | bitr4di | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ¬ 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∃ 𝑗 ∈ ℝ ¬ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
| 6 | simp2 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐹 : 𝐵 ⟶ ℝ* ) | |
| 7 | reex | ⊢ ℝ ∈ V | |
| 8 | 7 | ssex | ⊢ ( 𝐵 ⊆ ℝ → 𝐵 ∈ V ) |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐵 ∈ V ) |
| 10 | xrex | ⊢ ℝ* ∈ V | |
| 11 | 10 | a1i | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ℝ* ∈ V ) |
| 12 | fex2 | ⊢ ( ( 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐵 ∈ V ∧ ℝ* ∈ V ) → 𝐹 ∈ V ) | |
| 13 | 6 9 11 12 | syl3anc | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐹 ∈ V ) |
| 14 | limsupcl | ⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| 16 | simp3 | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) | |
| 17 | xrltnle | ⊢ ( ( ( lim sup ‘ 𝐹 ) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( lim sup ‘ 𝐹 ) < 𝐴 ↔ ¬ 𝐴 ≤ ( lim sup ‘ 𝐹 ) ) ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( lim sup ‘ 𝐹 ) < 𝐴 ↔ ¬ 𝐴 ≤ ( lim sup ‘ 𝐹 ) ) ) |
| 19 | 1 | limsupgf | ⊢ 𝐺 : ℝ ⟶ ℝ* |
| 20 | 19 | ffvelcdmi | ⊢ ( 𝑗 ∈ ℝ → ( 𝐺 ‘ 𝑗 ) ∈ ℝ* ) |
| 21 | xrltnle | ⊢ ( ( ( 𝐺 ‘ 𝑗 ) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐺 ‘ 𝑗 ) < 𝐴 ↔ ¬ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) | |
| 22 | 20 16 21 | syl2anr | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) ∧ 𝑗 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑗 ) < 𝐴 ↔ ¬ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
| 23 | 22 | rexbidva | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ∃ 𝑗 ∈ ℝ ( 𝐺 ‘ 𝑗 ) < 𝐴 ↔ ∃ 𝑗 ∈ ℝ ¬ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
| 24 | 5 18 23 | 3bitr4d | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( lim sup ‘ 𝐹 ) < 𝐴 ↔ ∃ 𝑗 ∈ ℝ ( 𝐺 ‘ 𝑗 ) < 𝐴 ) ) |