This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defining property of the superior limit function. (Contributed by Mario Carneiro, 5-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| Assertion | limsupgle | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐺 ‘ 𝐶 ) ≤ 𝐴 ↔ ∀ 𝑗 ∈ 𝐵 ( 𝐶 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 2 | 1 | limsupgval | ⊢ ( 𝐶 ∈ ℝ → ( 𝐺 ‘ 𝐶 ) = sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 3 | 2 | 3ad2ant2 | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝐺 ‘ 𝐶 ) = sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 4 | 3 | breq1d | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐺 ‘ 𝐶 ) ≤ 𝐴 ↔ sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝐴 ) ) |
| 5 | inss2 | ⊢ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* | |
| 6 | simp3 | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) | |
| 7 | supxrleub | ⊢ ( ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝐴 ) ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝐴 ) ) |
| 9 | imassrn | ⊢ ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ⊆ ran 𝐹 | |
| 10 | simp1r | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → 𝐹 : 𝐵 ⟶ ℝ* ) | |
| 11 | 10 | frnd | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ran 𝐹 ⊆ ℝ* ) |
| 12 | 9 11 | sstrid | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ⊆ ℝ* ) |
| 13 | dfss2 | ⊢ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ⊆ ℝ* ↔ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ) | |
| 14 | 12 13 | sylib | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ) |
| 15 | imadmres | ⊢ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) = ( 𝐹 “ ( 𝐶 [,) +∞ ) ) | |
| 16 | 14 15 | eqtr4di | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) ) |
| 17 | 16 | raleqdv | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝐴 ↔ ∀ 𝑥 ∈ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) 𝑥 ≤ 𝐴 ) ) |
| 18 | 10 | ffnd | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → 𝐹 Fn 𝐵 ) |
| 19 | 10 | fdmd | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → dom 𝐹 = 𝐵 ) |
| 20 | 19 | ineq2d | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐶 [,) +∞ ) ∩ dom 𝐹 ) = ( ( 𝐶 [,) +∞ ) ∩ 𝐵 ) ) |
| 21 | dmres | ⊢ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) = ( ( 𝐶 [,) +∞ ) ∩ dom 𝐹 ) | |
| 22 | incom | ⊢ ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) = ( ( 𝐶 [,) +∞ ) ∩ 𝐵 ) | |
| 23 | 20 21 22 | 3eqtr4g | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) = ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) ) |
| 24 | inss1 | ⊢ ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) ⊆ 𝐵 | |
| 25 | 23 24 | eqsstrdi | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ⊆ 𝐵 ) |
| 26 | breq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑗 ) → ( 𝑥 ≤ 𝐴 ↔ ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) | |
| 27 | 26 | ralima | ⊢ ( ( 𝐹 Fn 𝐵 ∧ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) 𝑥 ≤ 𝐴 ↔ ∀ 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) |
| 28 | 18 25 27 | syl2anc | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) 𝑥 ≤ 𝐴 ↔ ∀ 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) |
| 29 | 23 | eleq2d | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ↔ 𝑗 ∈ ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) ) ) |
| 30 | elin | ⊢ ( 𝑗 ∈ ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) ↔ ( 𝑗 ∈ 𝐵 ∧ 𝑗 ∈ ( 𝐶 [,) +∞ ) ) ) | |
| 31 | 29 30 | bitrdi | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ↔ ( 𝑗 ∈ 𝐵 ∧ 𝑗 ∈ ( 𝐶 [,) +∞ ) ) ) ) |
| 32 | simpl2 | ⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) ∧ 𝑗 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) | |
| 33 | simp1l | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → 𝐵 ⊆ ℝ ) | |
| 34 | 33 | sselda | ⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) ∧ 𝑗 ∈ 𝐵 ) → 𝑗 ∈ ℝ ) |
| 35 | elicopnf | ⊢ ( 𝐶 ∈ ℝ → ( 𝑗 ∈ ( 𝐶 [,) +∞ ) ↔ ( 𝑗 ∈ ℝ ∧ 𝐶 ≤ 𝑗 ) ) ) | |
| 36 | 35 | baibd | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ∈ ( 𝐶 [,) +∞ ) ↔ 𝐶 ≤ 𝑗 ) ) |
| 37 | 32 34 36 | syl2anc | ⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) ∧ 𝑗 ∈ 𝐵 ) → ( 𝑗 ∈ ( 𝐶 [,) +∞ ) ↔ 𝐶 ≤ 𝑗 ) ) |
| 38 | 37 | pm5.32da | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑗 ∈ 𝐵 ∧ 𝑗 ∈ ( 𝐶 [,) +∞ ) ) ↔ ( 𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗 ) ) ) |
| 39 | 31 38 | bitrd | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ↔ ( 𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗 ) ) ) |
| 40 | 39 | imbi1d | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ↔ ( ( 𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |
| 41 | impexp | ⊢ ( ( ( 𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ↔ ( 𝑗 ∈ 𝐵 → ( 𝐶 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) | |
| 42 | 40 41 | bitrdi | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ↔ ( 𝑗 ∈ 𝐵 → ( 𝐶 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) ) |
| 43 | 42 | ralbidv2 | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ∀ 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ↔ ∀ 𝑗 ∈ 𝐵 ( 𝐶 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |
| 44 | 17 28 43 | 3bitrd | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝐴 ↔ ∀ 𝑗 ∈ 𝐵 ( 𝐶 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |
| 45 | 4 8 44 | 3bitrd | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐺 ‘ 𝐶 ) ≤ 𝐴 ↔ ∀ 𝑗 ∈ 𝐵 ( 𝐶 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |