This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the superior limit function. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by Mario Carneiro, 7-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| Assertion | limsupgval | ⊢ ( 𝑀 ∈ ℝ → ( 𝐺 ‘ 𝑀 ) = sup ( ( ( 𝐹 “ ( 𝑀 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 2 | oveq1 | ⊢ ( 𝑘 = 𝑀 → ( 𝑘 [,) +∞ ) = ( 𝑀 [,) +∞ ) ) | |
| 3 | 2 | imaeq2d | ⊢ ( 𝑘 = 𝑀 → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) = ( 𝐹 “ ( 𝑀 [,) +∞ ) ) ) |
| 4 | 3 | ineq1d | ⊢ ( 𝑘 = 𝑀 → ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) = ( ( 𝐹 “ ( 𝑀 [,) +∞ ) ) ∩ ℝ* ) ) |
| 5 | 4 | supeq1d | ⊢ ( 𝑘 = 𝑀 → sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) = sup ( ( ( 𝐹 “ ( 𝑀 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
| 6 | xrltso | ⊢ < Or ℝ* | |
| 7 | 6 | supex | ⊢ sup ( ( ( 𝐹 “ ( 𝑀 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ V |
| 8 | 5 1 7 | fvmpt | ⊢ ( 𝑀 ∈ ℝ → ( 𝐺 ‘ 𝑀 ) = sup ( ( ( 𝐹 “ ( 𝑀 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |