This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a sequence is eventually at most A , then the limsup is also at most A . (The converse is only true if the less or equal is replaced by strictly less than; consider the sequence 1 / n which is never less or equal to zero even though the limsup is.) (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limsupbnd.1 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | |
| limsupbnd.2 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℝ* ) | ||
| limsupbnd.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | ||
| limsupbnd1.4 | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) | ||
| Assertion | limsupbnd1 | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupbnd.1 | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) | |
| 2 | limsupbnd.2 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℝ* ) | |
| 3 | limsupbnd.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 4 | limsupbnd1.4 | ⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) | |
| 5 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → 𝐵 ⊆ ℝ ) |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → 𝐹 : 𝐵 ⟶ ℝ* ) |
| 7 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → 𝑘 ∈ ℝ ) | |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → 𝐴 ∈ ℝ* ) |
| 9 | eqid | ⊢ ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 10 | 9 | limsupgle | ⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝑘 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 ↔ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |
| 11 | 5 6 7 8 10 | syl211anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 ↔ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |
| 12 | reex | ⊢ ℝ ∈ V | |
| 13 | 12 | ssex | ⊢ ( 𝐵 ⊆ ℝ → 𝐵 ∈ V ) |
| 14 | 1 13 | syl | ⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 15 | xrex | ⊢ ℝ* ∈ V | |
| 16 | 15 | a1i | ⊢ ( 𝜑 → ℝ* ∈ V ) |
| 17 | fex2 | ⊢ ( ( 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐵 ∈ V ∧ ℝ* ∈ V ) → 𝐹 ∈ V ) | |
| 18 | 2 14 16 17 | syl3anc | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 19 | limsupcl | ⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| 21 | 20 | xrleidd | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ) |
| 22 | 9 | limsuple | ⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ* ) → ( ( lim sup ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ℝ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ) ) |
| 23 | 1 2 20 22 | syl3anc | ⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ℝ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ) ) |
| 24 | 21 23 | mpbid | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℝ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ) |
| 25 | 24 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ) |
| 26 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
| 27 | 9 | limsupgf | ⊢ ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ* |
| 28 | 27 | a1i | ⊢ ( 𝜑 → ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ* ) |
| 29 | 28 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ∈ ℝ* ) |
| 30 | xrletr | ⊢ ( ( ( lim sup ‘ 𝐹 ) ∈ ℝ* ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 ) → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) ) | |
| 31 | 26 29 8 30 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 ) → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) ) |
| 32 | 25 31 | mpand | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) ) |
| 33 | 11 32 | sylbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) ) |
| 34 | 33 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) ) |
| 35 | 4 34 | mpd | ⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) |