This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fimaxre3 | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐴 𝐵 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝐵 ≤ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29 | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ ℝ ∧ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) → ∃ 𝑦 ∈ 𝐴 ( 𝐵 ∈ ℝ ∧ 𝑧 = 𝐵 ) ) | |
| 2 | eleq1 | ⊢ ( 𝑧 = 𝐵 → ( 𝑧 ∈ ℝ ↔ 𝐵 ∈ ℝ ) ) | |
| 3 | 2 | biimparc | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝑧 = 𝐵 ) → 𝑧 ∈ ℝ ) |
| 4 | 3 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ 𝐴 ( 𝐵 ∈ ℝ ∧ 𝑧 = 𝐵 ) → 𝑧 ∈ ℝ ) |
| 5 | 1 4 | syl | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ ℝ ∧ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ) → 𝑧 ∈ ℝ ) |
| 6 | 5 | ex | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ ℝ → ( ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ ℝ ) ) |
| 7 | 6 | abssdv | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ ℝ → { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 } ⊆ ℝ ) |
| 8 | abrexfi | ⊢ ( 𝐴 ∈ Fin → { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 } ∈ Fin ) | |
| 9 | fimaxre2 | ⊢ ( ( { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 } ⊆ ℝ ∧ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 } ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑥 ) | |
| 10 | 7 8 9 | syl2anr | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐴 𝐵 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑥 ) |
| 11 | r19.23v | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ↔ ( ∃ 𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ) | |
| 12 | 11 | albii | ⊢ ( ∀ 𝑤 ∀ 𝑦 ∈ 𝐴 ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ↔ ∀ 𝑤 ( ∃ 𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ) |
| 13 | ralcom4 | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑤 ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ↔ ∀ 𝑤 ∀ 𝑦 ∈ 𝐴 ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ) | |
| 14 | eqeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 = 𝐵 ↔ 𝑤 = 𝐵 ) ) | |
| 15 | 14 | rexbidv | ⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃ 𝑦 ∈ 𝐴 𝑤 = 𝐵 ) ) |
| 16 | 15 | ralab | ⊢ ( ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑥 ↔ ∀ 𝑤 ( ∃ 𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ) |
| 17 | 12 13 16 | 3bitr4i | ⊢ ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑤 ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ↔ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑥 ) |
| 18 | nfv | ⊢ Ⅎ 𝑤 𝐵 ≤ 𝑥 | |
| 19 | breq1 | ⊢ ( 𝑤 = 𝐵 → ( 𝑤 ≤ 𝑥 ↔ 𝐵 ≤ 𝑥 ) ) | |
| 20 | 18 19 | ceqsalg | ⊢ ( 𝐵 ∈ ℝ → ( ∀ 𝑤 ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ↔ 𝐵 ≤ 𝑥 ) ) |
| 21 | 20 | ralimi | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ ℝ → ∀ 𝑦 ∈ 𝐴 ( ∀ 𝑤 ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ↔ 𝐵 ≤ 𝑥 ) ) |
| 22 | ralbi | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( ∀ 𝑤 ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ↔ 𝐵 ≤ 𝑥 ) → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑤 ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 𝐵 ≤ 𝑥 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ ℝ → ( ∀ 𝑦 ∈ 𝐴 ∀ 𝑤 ( 𝑤 = 𝐵 → 𝑤 ≤ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐴 𝐵 ≤ 𝑥 ) ) |
| 24 | 17 23 | bitr3id | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ ℝ → ( ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑥 ↔ ∀ 𝑦 ∈ 𝐴 𝐵 ≤ 𝑥 ) ) |
| 25 | 24 | rexbidv | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝐵 ∈ ℝ → ( ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝐵 ≤ 𝑥 ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐴 𝐵 ∈ ℝ ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑤 ∈ { 𝑧 ∣ ∃ 𝑦 ∈ 𝐴 𝑧 = 𝐵 } 𝑤 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝐵 ≤ 𝑥 ) ) |
| 27 | 10 26 | mpbid | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐴 𝐵 ∈ ℝ ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝐵 ≤ 𝑥 ) |