This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elicopnf | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ( 𝐴 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 2 | elico2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 𝐵 ∈ ( 𝐴 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞ ) ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ( 𝐴 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞ ) ) ) |
| 4 | ltpnf | ⊢ ( 𝐵 ∈ ℝ → 𝐵 < +∞ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐵 < +∞ ) |
| 6 | 5 | pm4.71i | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ↔ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐵 < +∞ ) ) |
| 7 | df-3an | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞ ) ↔ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐵 < +∞ ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞ ) ) |
| 9 | 3 8 | bitr4di | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ( 𝐴 [,) +∞ ) ↔ ( 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ) ) |