This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a sequence of real numbers has upper bounded limit supremum, then all the partial suprema are real. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| limsupgre.z | |- Z = ( ZZ>= ` M ) |
||
| Assertion | limsupgre | |- ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) -> G : RR --> RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupval.1 | |- G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
|
| 2 | limsupgre.z | |- Z = ( ZZ>= ` M ) |
|
| 3 | xrltso | |- < Or RR* |
|
| 4 | 3 | supex | |- sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V |
| 5 | 4 | a1i | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ k e. RR ) -> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) e. _V ) |
| 6 | 1 | a1i | |- ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) -> G = ( k e. RR |-> sup ( ( ( F " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) ) |
| 7 | 1 | limsupgval | |- ( a e. RR -> ( G ` a ) = sup ( ( ( F " ( a [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 8 | 7 | adantl | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( G ` a ) = sup ( ( ( F " ( a [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 9 | simpl3 | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( limsup ` F ) < +oo ) |
|
| 10 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 11 | 2 10 | eqsstri | |- Z C_ ZZ |
| 12 | zssre | |- ZZ C_ RR |
|
| 13 | 11 12 | sstri | |- Z C_ RR |
| 14 | 13 | a1i | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> Z C_ RR ) |
| 15 | simpl2 | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> F : Z --> RR ) |
|
| 16 | ressxr | |- RR C_ RR* |
|
| 17 | fss | |- ( ( F : Z --> RR /\ RR C_ RR* ) -> F : Z --> RR* ) |
|
| 18 | 15 16 17 | sylancl | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> F : Z --> RR* ) |
| 19 | pnfxr | |- +oo e. RR* |
|
| 20 | 19 | a1i | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> +oo e. RR* ) |
| 21 | 1 | limsuplt | |- ( ( Z C_ RR /\ F : Z --> RR* /\ +oo e. RR* ) -> ( ( limsup ` F ) < +oo <-> E. n e. RR ( G ` n ) < +oo ) ) |
| 22 | 14 18 20 21 | syl3anc | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( ( limsup ` F ) < +oo <-> E. n e. RR ( G ` n ) < +oo ) ) |
| 23 | 9 22 | mpbid | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> E. n e. RR ( G ` n ) < +oo ) |
| 24 | fzfi | |- ( M ... ( |_ ` n ) ) e. Fin |
|
| 25 | 15 | adantr | |- ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) -> F : Z --> RR ) |
| 26 | elfzuz | |- ( m e. ( M ... ( |_ ` n ) ) -> m e. ( ZZ>= ` M ) ) |
|
| 27 | 26 2 | eleqtrrdi | |- ( m e. ( M ... ( |_ ` n ) ) -> m e. Z ) |
| 28 | ffvelcdm | |- ( ( F : Z --> RR /\ m e. Z ) -> ( F ` m ) e. RR ) |
|
| 29 | 25 27 28 | syl2an | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ m e. ( M ... ( |_ ` n ) ) ) -> ( F ` m ) e. RR ) |
| 30 | 29 | ralrimiva | |- ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) -> A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) e. RR ) |
| 31 | fimaxre3 | |- ( ( ( M ... ( |_ ` n ) ) e. Fin /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) e. RR ) -> E. r e. RR A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) |
|
| 32 | 24 30 31 | sylancr | |- ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) -> E. r e. RR A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) |
| 33 | simpr | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> a e. RR ) |
|
| 34 | 33 | ad2antrr | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> a e. RR ) |
| 35 | 1 | limsupgf | |- G : RR --> RR* |
| 36 | 35 | ffvelcdmi | |- ( a e. RR -> ( G ` a ) e. RR* ) |
| 37 | 34 36 | syl | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> ( G ` a ) e. RR* ) |
| 38 | simprl | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> r e. RR ) |
|
| 39 | 16 38 | sselid | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> r e. RR* ) |
| 40 | simprl | |- ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) -> n e. RR ) |
|
| 41 | 40 | adantr | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> n e. RR ) |
| 42 | 35 | ffvelcdmi | |- ( n e. RR -> ( G ` n ) e. RR* ) |
| 43 | 41 42 | syl | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> ( G ` n ) e. RR* ) |
| 44 | 39 43 | ifcld | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> if ( ( G ` n ) <_ r , r , ( G ` n ) ) e. RR* ) |
| 45 | 19 | a1i | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> +oo e. RR* ) |
| 46 | 40 | ad2antrr | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> n e. RR ) |
| 47 | 13 | a1i | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> Z C_ RR ) |
| 48 | 47 | sselda | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> i e. RR ) |
| 49 | 43 | xrleidd | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> ( G ` n ) <_ ( G ` n ) ) |
| 50 | 18 | ad2antrr | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> F : Z --> RR* ) |
| 51 | 1 | limsupgle | |- ( ( ( Z C_ RR /\ F : Z --> RR* ) /\ n e. RR /\ ( G ` n ) e. RR* ) -> ( ( G ` n ) <_ ( G ` n ) <-> A. i e. Z ( n <_ i -> ( F ` i ) <_ ( G ` n ) ) ) ) |
| 52 | 47 50 41 43 51 | syl211anc | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> ( ( G ` n ) <_ ( G ` n ) <-> A. i e. Z ( n <_ i -> ( F ` i ) <_ ( G ` n ) ) ) ) |
| 53 | 49 52 | mpbid | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> A. i e. Z ( n <_ i -> ( F ` i ) <_ ( G ` n ) ) ) |
| 54 | 53 | r19.21bi | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( n <_ i -> ( F ` i ) <_ ( G ` n ) ) ) |
| 55 | 54 | imp | |- ( ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) /\ n <_ i ) -> ( F ` i ) <_ ( G ` n ) ) |
| 56 | 46 42 | syl | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( G ` n ) e. RR* ) |
| 57 | 39 | adantr | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> r e. RR* ) |
| 58 | xrmax1 | |- ( ( ( G ` n ) e. RR* /\ r e. RR* ) -> ( G ` n ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) |
|
| 59 | 56 57 58 | syl2anc | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( G ` n ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) |
| 60 | 50 | ffvelcdmda | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( F ` i ) e. RR* ) |
| 61 | 44 | adantr | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> if ( ( G ` n ) <_ r , r , ( G ` n ) ) e. RR* ) |
| 62 | xrletr | |- ( ( ( F ` i ) e. RR* /\ ( G ` n ) e. RR* /\ if ( ( G ` n ) <_ r , r , ( G ` n ) ) e. RR* ) -> ( ( ( F ` i ) <_ ( G ` n ) /\ ( G ` n ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) ) |
|
| 63 | 60 56 61 62 | syl3anc | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( ( ( F ` i ) <_ ( G ` n ) /\ ( G ` n ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) ) |
| 64 | 59 63 | mpan2d | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( ( F ` i ) <_ ( G ` n ) -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) ) |
| 65 | 64 | adantr | |- ( ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) /\ n <_ i ) -> ( ( F ` i ) <_ ( G ` n ) -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) ) |
| 66 | 55 65 | mpd | |- ( ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) /\ n <_ i ) -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) |
| 67 | fveq2 | |- ( m = i -> ( F ` m ) = ( F ` i ) ) |
|
| 68 | 67 | breq1d | |- ( m = i -> ( ( F ` m ) <_ r <-> ( F ` i ) <_ r ) ) |
| 69 | simprr | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) |
|
| 70 | 69 | ad2antrr | |- ( ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) /\ i <_ n ) -> A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) |
| 71 | simpr | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> i e. Z ) |
|
| 72 | 71 2 | eleqtrdi | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> i e. ( ZZ>= ` M ) ) |
| 73 | 41 | flcld | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> ( |_ ` n ) e. ZZ ) |
| 74 | 73 | adantr | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( |_ ` n ) e. ZZ ) |
| 75 | elfz5 | |- ( ( i e. ( ZZ>= ` M ) /\ ( |_ ` n ) e. ZZ ) -> ( i e. ( M ... ( |_ ` n ) ) <-> i <_ ( |_ ` n ) ) ) |
|
| 76 | 72 74 75 | syl2anc | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( i e. ( M ... ( |_ ` n ) ) <-> i <_ ( |_ ` n ) ) ) |
| 77 | 11 71 | sselid | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> i e. ZZ ) |
| 78 | flge | |- ( ( n e. RR /\ i e. ZZ ) -> ( i <_ n <-> i <_ ( |_ ` n ) ) ) |
|
| 79 | 46 77 78 | syl2anc | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( i <_ n <-> i <_ ( |_ ` n ) ) ) |
| 80 | 76 79 | bitr4d | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( i e. ( M ... ( |_ ` n ) ) <-> i <_ n ) ) |
| 81 | 80 | biimpar | |- ( ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) /\ i <_ n ) -> i e. ( M ... ( |_ ` n ) ) ) |
| 82 | 68 70 81 | rspcdva | |- ( ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) /\ i <_ n ) -> ( F ` i ) <_ r ) |
| 83 | xrmax2 | |- ( ( ( G ` n ) e. RR* /\ r e. RR* ) -> r <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) |
|
| 84 | 43 39 83 | syl2anc | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> r <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) |
| 85 | 84 | adantr | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> r <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) |
| 86 | xrletr | |- ( ( ( F ` i ) e. RR* /\ r e. RR* /\ if ( ( G ` n ) <_ r , r , ( G ` n ) ) e. RR* ) -> ( ( ( F ` i ) <_ r /\ r <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) ) |
|
| 87 | 60 57 61 86 | syl3anc | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( ( ( F ` i ) <_ r /\ r <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) ) |
| 88 | 85 87 | mpan2d | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( ( F ` i ) <_ r -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) ) |
| 89 | 88 | adantr | |- ( ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) /\ i <_ n ) -> ( ( F ` i ) <_ r -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) ) |
| 90 | 82 89 | mpd | |- ( ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) /\ i <_ n ) -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) |
| 91 | 46 48 66 90 | lecasei | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) |
| 92 | 91 | a1d | |- ( ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) /\ i e. Z ) -> ( a <_ i -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) ) |
| 93 | 92 | ralrimiva | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> A. i e. Z ( a <_ i -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) ) |
| 94 | 1 | limsupgle | |- ( ( ( Z C_ RR /\ F : Z --> RR* ) /\ a e. RR /\ if ( ( G ` n ) <_ r , r , ( G ` n ) ) e. RR* ) -> ( ( G ` a ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) <-> A. i e. Z ( a <_ i -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) ) ) |
| 95 | 47 50 34 44 94 | syl211anc | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> ( ( G ` a ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) <-> A. i e. Z ( a <_ i -> ( F ` i ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) ) ) |
| 96 | 93 95 | mpbird | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> ( G ` a ) <_ if ( ( G ` n ) <_ r , r , ( G ` n ) ) ) |
| 97 | 38 | ltpnfd | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> r < +oo ) |
| 98 | simplrr | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> ( G ` n ) < +oo ) |
|
| 99 | breq1 | |- ( r = if ( ( G ` n ) <_ r , r , ( G ` n ) ) -> ( r < +oo <-> if ( ( G ` n ) <_ r , r , ( G ` n ) ) < +oo ) ) |
|
| 100 | breq1 | |- ( ( G ` n ) = if ( ( G ` n ) <_ r , r , ( G ` n ) ) -> ( ( G ` n ) < +oo <-> if ( ( G ` n ) <_ r , r , ( G ` n ) ) < +oo ) ) |
|
| 101 | 99 100 | ifboth | |- ( ( r < +oo /\ ( G ` n ) < +oo ) -> if ( ( G ` n ) <_ r , r , ( G ` n ) ) < +oo ) |
| 102 | 97 98 101 | syl2anc | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> if ( ( G ` n ) <_ r , r , ( G ` n ) ) < +oo ) |
| 103 | 37 44 45 96 102 | xrlelttrd | |- ( ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) /\ ( r e. RR /\ A. m e. ( M ... ( |_ ` n ) ) ( F ` m ) <_ r ) ) -> ( G ` a ) < +oo ) |
| 104 | 32 103 | rexlimddv | |- ( ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) /\ ( n e. RR /\ ( G ` n ) < +oo ) ) -> ( G ` a ) < +oo ) |
| 105 | 23 104 | rexlimddv | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( G ` a ) < +oo ) |
| 106 | 8 105 | eqbrtrrd | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> sup ( ( ( F " ( a [,) +oo ) ) i^i RR* ) , RR* , < ) < +oo ) |
| 107 | imassrn | |- ( F " ( a [,) +oo ) ) C_ ran F |
|
| 108 | 15 | frnd | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ran F C_ RR ) |
| 109 | 107 108 | sstrid | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( F " ( a [,) +oo ) ) C_ RR ) |
| 110 | 109 16 | sstrdi | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( F " ( a [,) +oo ) ) C_ RR* ) |
| 111 | dfss2 | |- ( ( F " ( a [,) +oo ) ) C_ RR* <-> ( ( F " ( a [,) +oo ) ) i^i RR* ) = ( F " ( a [,) +oo ) ) ) |
|
| 112 | 110 111 | sylib | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( ( F " ( a [,) +oo ) ) i^i RR* ) = ( F " ( a [,) +oo ) ) ) |
| 113 | 112 109 | eqsstrd | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( ( F " ( a [,) +oo ) ) i^i RR* ) C_ RR ) |
| 114 | simpl1 | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> M e. ZZ ) |
|
| 115 | flcl | |- ( a e. RR -> ( |_ ` a ) e. ZZ ) |
|
| 116 | 115 | adantl | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( |_ ` a ) e. ZZ ) |
| 117 | 116 | peano2zd | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( ( |_ ` a ) + 1 ) e. ZZ ) |
| 118 | 117 114 | ifcld | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. ZZ ) |
| 119 | 114 | zred | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> M e. RR ) |
| 120 | 117 | zred | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( ( |_ ` a ) + 1 ) e. RR ) |
| 121 | max1 | |- ( ( M e. RR /\ ( ( |_ ` a ) + 1 ) e. RR ) -> M <_ if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) ) |
|
| 122 | 119 120 121 | syl2anc | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> M <_ if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) ) |
| 123 | eluz2 | |- ( if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. ZZ /\ M <_ if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) ) ) |
|
| 124 | 114 118 122 123 | syl3anbrc | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. ( ZZ>= ` M ) ) |
| 125 | 124 2 | eleqtrrdi | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. Z ) |
| 126 | 15 | fdmd | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> dom F = Z ) |
| 127 | 125 126 | eleqtrrd | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. dom F ) |
| 128 | 118 | zred | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. RR ) |
| 129 | fllep1 | |- ( a e. RR -> a <_ ( ( |_ ` a ) + 1 ) ) |
|
| 130 | 129 | adantl | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> a <_ ( ( |_ ` a ) + 1 ) ) |
| 131 | max2 | |- ( ( M e. RR /\ ( ( |_ ` a ) + 1 ) e. RR ) -> ( ( |_ ` a ) + 1 ) <_ if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) ) |
|
| 132 | 119 120 131 | syl2anc | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( ( |_ ` a ) + 1 ) <_ if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) ) |
| 133 | 33 120 128 130 132 | letrd | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> a <_ if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) ) |
| 134 | elicopnf | |- ( a e. RR -> ( if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. ( a [,) +oo ) <-> ( if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. RR /\ a <_ if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) ) ) ) |
|
| 135 | 134 | adantl | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. ( a [,) +oo ) <-> ( if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. RR /\ a <_ if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) ) ) ) |
| 136 | 128 133 135 | mpbir2and | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. ( a [,) +oo ) ) |
| 137 | inelcm | |- ( ( if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. dom F /\ if ( M <_ ( ( |_ ` a ) + 1 ) , ( ( |_ ` a ) + 1 ) , M ) e. ( a [,) +oo ) ) -> ( dom F i^i ( a [,) +oo ) ) =/= (/) ) |
|
| 138 | 127 136 137 | syl2anc | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( dom F i^i ( a [,) +oo ) ) =/= (/) ) |
| 139 | imadisj | |- ( ( F " ( a [,) +oo ) ) = (/) <-> ( dom F i^i ( a [,) +oo ) ) = (/) ) |
|
| 140 | 139 | necon3bii | |- ( ( F " ( a [,) +oo ) ) =/= (/) <-> ( dom F i^i ( a [,) +oo ) ) =/= (/) ) |
| 141 | 138 140 | sylibr | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( F " ( a [,) +oo ) ) =/= (/) ) |
| 142 | 112 141 | eqnetrd | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( ( F " ( a [,) +oo ) ) i^i RR* ) =/= (/) ) |
| 143 | supxrre1 | |- ( ( ( ( F " ( a [,) +oo ) ) i^i RR* ) C_ RR /\ ( ( F " ( a [,) +oo ) ) i^i RR* ) =/= (/) ) -> ( sup ( ( ( F " ( a [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR <-> sup ( ( ( F " ( a [,) +oo ) ) i^i RR* ) , RR* , < ) < +oo ) ) |
|
| 144 | 113 142 143 | syl2anc | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( sup ( ( ( F " ( a [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR <-> sup ( ( ( F " ( a [,) +oo ) ) i^i RR* ) , RR* , < ) < +oo ) ) |
| 145 | 106 144 | mpbird | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> sup ( ( ( F " ( a [,) +oo ) ) i^i RR* ) , RR* , < ) e. RR ) |
| 146 | 8 145 | eqeltrd | |- ( ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) /\ a e. RR ) -> ( G ` a ) e. RR ) |
| 147 | 5 6 146 | fmpt2d | |- ( ( M e. ZZ /\ F : Z --> RR /\ ( limsup ` F ) < +oo ) -> G : RR --> RR ) |