This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for lcmfunsnlem2 . (Contributed by AV, 26-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfunsnlem2lem2 | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun | ⊢ ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑖 ∈ { 𝑛 } ) ) | |
| 2 | elun | ⊢ ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ) | |
| 3 | simp1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑧 ∈ ℤ ) | |
| 4 | 3 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑧 ∈ ℤ ) |
| 5 | 4 | adantl | ⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑧 ∈ ℤ ) |
| 6 | sneq | ⊢ ( 𝑛 = 𝑧 → { 𝑛 } = { 𝑧 } ) | |
| 7 | 6 | uneq2d | ⊢ ( 𝑛 = 𝑧 → ( 𝑦 ∪ { 𝑛 } ) = ( 𝑦 ∪ { 𝑧 } ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑛 = 𝑧 → ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑛 = 𝑧 → ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) | |
| 10 | 8 9 | eqeq12d | ⊢ ( 𝑛 = 𝑧 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ↔ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 11 | 10 | rspcv | ⊢ ( 𝑧 ∈ ℤ → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 12 | 5 11 | syl | ⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 13 | ssel | ⊢ ( 𝑦 ⊆ ℤ → ( 𝑖 ∈ 𝑦 → 𝑖 ∈ ℤ ) ) | |
| 14 | 13 | 3ad2ant2 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑖 ∈ 𝑦 → 𝑖 ∈ ℤ ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑖 ∈ 𝑦 → 𝑖 ∈ ℤ ) ) |
| 16 | 15 | impcom | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∈ ℤ ) |
| 17 | lcmfcl | ⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) | |
| 18 | 17 | nn0zd | ⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 19 | 18 | 3adant1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 22 | lcmcl | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑧 lcm 𝑛 ) ∈ ℕ0 ) | |
| 23 | 3 22 | sylan | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑧 lcm 𝑛 ) ∈ ℕ0 ) |
| 24 | 23 | nn0zd | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑧 lcm 𝑛 ) ∈ ℤ ) |
| 25 | 24 | adantl | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( 𝑧 lcm 𝑛 ) ∈ ℤ ) |
| 26 | lcmcl | ⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∈ ℕ0 ) | |
| 27 | 21 25 26 | syl2anc | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∈ ℕ0 ) |
| 28 | 27 | nn0zd | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∈ ℤ ) |
| 29 | breq1 | ⊢ ( 𝑘 = 𝑖 → ( 𝑘 ∥ ( lcm ‘ 𝑦 ) ↔ 𝑖 ∥ ( lcm ‘ 𝑦 ) ) ) | |
| 30 | 29 | rspcv | ⊢ ( 𝑖 ∈ 𝑦 → ( ∀ 𝑘 ∈ 𝑦 𝑘 ∥ ( lcm ‘ 𝑦 ) → 𝑖 ∥ ( lcm ‘ 𝑦 ) ) ) |
| 31 | dvdslcmf | ⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ∀ 𝑘 ∈ 𝑦 𝑘 ∥ ( lcm ‘ 𝑦 ) ) | |
| 32 | 31 | 3adant1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ∀ 𝑘 ∈ 𝑦 𝑘 ∥ ( lcm ‘ 𝑦 ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ∀ 𝑘 ∈ 𝑦 𝑘 ∥ ( lcm ‘ 𝑦 ) ) |
| 34 | 30 33 | impel | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( lcm ‘ 𝑦 ) ) |
| 35 | 20 24 | jca | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) ) |
| 36 | 35 | adantl | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) ) |
| 37 | dvdslcm | ⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ∧ ( 𝑧 lcm 𝑛 ) ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) ) | |
| 38 | 37 | simpld | ⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ ( 𝑧 lcm 𝑛 ) ∈ ℤ ) → ( lcm ‘ 𝑦 ) ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
| 39 | 36 38 | syl | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( lcm ‘ 𝑦 ) ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
| 40 | 16 21 28 34 39 | dvdstrd | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
| 41 | 4 | adantl | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑧 ∈ ℤ ) |
| 42 | simprr | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑛 ∈ ℤ ) | |
| 43 | lcmass | ⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) | |
| 44 | 21 41 42 43 | syl3anc | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm ( 𝑧 lcm 𝑛 ) ) ) |
| 45 | 40 44 | breqtrrd | ⊢ ( ( 𝑖 ∈ 𝑦 ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
| 46 | 45 | ex | ⊢ ( 𝑖 ∈ 𝑦 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
| 47 | elsni | ⊢ ( 𝑖 ∈ { 𝑧 } → 𝑖 = 𝑧 ) | |
| 48 | 17 | 3adant1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) |
| 49 | 48 | nn0zd | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 50 | lcmcl | ⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℕ0 ) | |
| 51 | 49 3 50 | syl2anc | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℕ0 ) |
| 52 | 51 | nn0zd | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ) |
| 53 | 52 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ) |
| 54 | lcmcl | ⊢ ( ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∈ ℕ0 ) | |
| 55 | 52 54 | sylan | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∈ ℕ0 ) |
| 56 | 55 | nn0zd | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∈ ℤ ) |
| 57 | 19 3 | jca | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 58 | 57 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 59 | dvdslcm | ⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) ∥ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∧ 𝑧 ∥ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) | |
| 60 | 59 | simprd | ⊢ ( ( ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → 𝑧 ∥ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
| 61 | 58 60 | syl | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑧 ∥ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
| 62 | dvdslcm | ⊢ ( ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ∧ 𝑛 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) | |
| 63 | 62 | simpld | ⊢ ( ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
| 64 | 52 63 | sylan | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
| 65 | 4 53 56 61 64 | dvdstrd | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑧 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
| 66 | breq1 | ⊢ ( 𝑖 = 𝑧 → ( 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ↔ 𝑧 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) | |
| 67 | 65 66 | imbitrrid | ⊢ ( 𝑖 = 𝑧 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
| 68 | 47 67 | syl | ⊢ ( 𝑖 ∈ { 𝑧 } → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
| 69 | 46 68 | jaoi | ⊢ ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
| 70 | 69 | imp | ⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) |
| 71 | oveq1 | ⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) | |
| 72 | 71 | breq2d | ⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ↔ 𝑖 ∥ ( ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) lcm 𝑛 ) ) ) |
| 73 | 70 72 | syl5ibrcom | ⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 74 | 12 73 | syld | ⊢ ( ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 75 | 74 | ex | ⊢ ( ( 𝑖 ∈ 𝑦 ∨ 𝑖 ∈ { 𝑧 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 76 | 2 75 | sylbi | ⊢ ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 77 | elsni | ⊢ ( 𝑖 ∈ { 𝑛 } → 𝑖 = 𝑛 ) | |
| 78 | simp2 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ⊆ ℤ ) | |
| 79 | snssi | ⊢ ( 𝑧 ∈ ℤ → { 𝑧 } ⊆ ℤ ) | |
| 80 | 79 | 3ad2ant1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → { 𝑧 } ⊆ ℤ ) |
| 81 | 78 80 | unssd | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
| 82 | simp3 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ∈ Fin ) | |
| 83 | snfi | ⊢ { 𝑧 } ∈ Fin | |
| 84 | unfi | ⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) | |
| 85 | 82 83 84 | sylancl | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 86 | lcmfcl | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) | |
| 87 | 81 85 86 | syl2anc | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
| 88 | 87 | nn0zd | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ) |
| 89 | 88 | anim1i | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
| 90 | 89 | adantr | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
| 91 | dvdslcm | ⊢ ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) | |
| 92 | 90 91 | syl | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 93 | 92 | simprd | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
| 94 | breq1 | ⊢ ( 𝑖 = 𝑛 → ( 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ↔ 𝑛 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) | |
| 95 | 93 94 | imbitrrid | ⊢ ( 𝑖 = 𝑛 → ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 96 | 95 | expd | ⊢ ( 𝑖 = 𝑛 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 97 | 77 96 | syl | ⊢ ( 𝑖 ∈ { 𝑛 } → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 98 | 76 97 | jaoi | ⊢ ( ( 𝑖 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑖 ∈ { 𝑛 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 99 | 1 98 | sylbi | ⊢ ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 100 | 99 | com13 | ⊢ ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 101 | 100 | expd | ⊢ ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 102 | 101 | adantl | ⊢ ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 103 | 102 | impcom | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 104 | 103 | impcom | ⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 105 | 104 | adantl | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 106 | 105 | ralrimiv | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
| 107 | lcmfunsnlem2lem1 | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) | |
| 108 | 89 | adantr | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
| 109 | 81 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
| 110 | 85 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 111 | df-nel | ⊢ ( 0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦 ) | |
| 112 | 111 | biimpi | ⊢ ( 0 ∉ 𝑦 → ¬ 0 ∈ 𝑦 ) |
| 113 | 112 | 3ad2ant1 | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ 𝑦 ) |
| 114 | elsni | ⊢ ( 0 ∈ { 𝑧 } → 0 = 𝑧 ) | |
| 115 | 114 | eqcomd | ⊢ ( 0 ∈ { 𝑧 } → 𝑧 = 0 ) |
| 116 | 115 | necon3ai | ⊢ ( 𝑧 ≠ 0 → ¬ 0 ∈ { 𝑧 } ) |
| 117 | 116 | 3ad2ant2 | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ { 𝑧 } ) |
| 118 | ioran | ⊢ ( ¬ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ { 𝑧 } ) ) | |
| 119 | 113 117 118 | sylanbrc | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) |
| 120 | elun | ⊢ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) | |
| 121 | 119 120 | sylnibr | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 122 | df-nel | ⊢ ( 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ↔ ¬ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 123 | 121 122 | sylibr | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ) |
| 124 | lcmfn0cl | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ ) | |
| 125 | 109 110 123 124 | syl2an3an | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ ) |
| 126 | 125 | nnne0d | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≠ 0 ) |
| 127 | 126 | neneqd | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ¬ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ) |
| 128 | neneq | ⊢ ( 𝑛 ≠ 0 → ¬ 𝑛 = 0 ) | |
| 129 | 128 | 3ad2ant3 | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 𝑛 = 0 ) |
| 130 | 129 | adantl | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ¬ 𝑛 = 0 ) |
| 131 | ioran | ⊢ ( ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ↔ ( ¬ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∧ ¬ 𝑛 = 0 ) ) | |
| 132 | 127 130 131 | sylanbrc | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) |
| 133 | lcmn0cl | ⊢ ( ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ) | |
| 134 | 108 132 133 | syl2anc | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ) |
| 135 | snssi | ⊢ ( 𝑛 ∈ ℤ → { 𝑛 } ⊆ ℤ ) | |
| 136 | 135 | adantl | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → { 𝑛 } ⊆ ℤ ) |
| 137 | 109 136 | unssd | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ) |
| 138 | 137 | adantr | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ) |
| 139 | 83 84 | mpan2 | ⊢ ( 𝑦 ∈ Fin → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 140 | snfi | ⊢ { 𝑛 } ∈ Fin | |
| 141 | unfi | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ { 𝑛 } ∈ Fin ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) | |
| 142 | 139 140 141 | sylancl | ⊢ ( 𝑦 ∈ Fin → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
| 143 | 142 | 3ad2ant3 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
| 144 | 143 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
| 145 | 144 | adantr | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ) |
| 146 | elun | ⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) ) | |
| 147 | nnel | ⊢ ( ¬ 0 ∉ 𝑦 ↔ 0 ∈ 𝑦 ) | |
| 148 | 147 | biimpri | ⊢ ( 0 ∈ 𝑦 → ¬ 0 ∉ 𝑦 ) |
| 149 | 148 | 3mix1d | ⊢ ( 0 ∈ 𝑦 → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 150 | nne | ⊢ ( ¬ 𝑧 ≠ 0 ↔ 𝑧 = 0 ) | |
| 151 | 115 150 | sylibr | ⊢ ( 0 ∈ { 𝑧 } → ¬ 𝑧 ≠ 0 ) |
| 152 | 151 | 3mix2d | ⊢ ( 0 ∈ { 𝑧 } → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 153 | 149 152 | jaoi | ⊢ ( ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 154 | 120 153 | sylbi | ⊢ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 155 | elsni | ⊢ ( 0 ∈ { 𝑛 } → 0 = 𝑛 ) | |
| 156 | 155 | eqcomd | ⊢ ( 0 ∈ { 𝑛 } → 𝑛 = 0 ) |
| 157 | nne | ⊢ ( ¬ 𝑛 ≠ 0 ↔ 𝑛 = 0 ) | |
| 158 | 156 157 | sylibr | ⊢ ( 0 ∈ { 𝑛 } → ¬ 𝑛 ≠ 0 ) |
| 159 | 158 | 3mix3d | ⊢ ( 0 ∈ { 𝑛 } → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 160 | 154 159 | jaoi | ⊢ ( ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 161 | 146 160 | sylbi | ⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) |
| 162 | 3ianor | ⊢ ( ¬ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ↔ ( ¬ 0 ∉ 𝑦 ∨ ¬ 𝑧 ≠ 0 ∨ ¬ 𝑛 ≠ 0 ) ) | |
| 163 | 161 162 | sylibr | ⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ¬ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) |
| 164 | 163 | con2i | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
| 165 | df-nel | ⊢ ( 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ¬ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) | |
| 166 | 164 165 | sylibr | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
| 167 | 166 | adantl | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
| 168 | 138 145 167 | 3jca | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) |
| 169 | 134 168 | jca | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) |
| 170 | 169 | ex | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 ∈ ℤ ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) |
| 171 | 170 | ex | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) ) |
| 172 | 171 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) ) |
| 173 | 172 | impcom | ⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) ) |
| 174 | 173 | impcom | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) ) |
| 175 | lcmf | ⊢ ( ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∈ ℕ ∧ ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ∈ Fin ∧ 0 ∉ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ↔ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) ) ) | |
| 176 | 174 175 | syl | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ↔ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) ) ) |
| 177 | 106 107 176 | mpbir2and | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) ) |
| 178 | 177 | eqcomd | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |