This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Characterization of the least common multiple of a set of integers (without 0): A positiven integer is the least common multiple of a set of integers iff it divides each of the elements of the set and every integer which divides each of the elements of the set is greater than or equal to this integer. (Contributed by AV, 22-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmf | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( 𝐾 = ( lcm ‘ 𝑍 ) ↔ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdslcmf | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) ) |
| 3 | lcmfledvds | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( ( 𝑘 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 ) → ( lcm ‘ 𝑍 ) ≤ 𝑘 ) ) | |
| 4 | 3 | expdimp | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ≤ 𝑘 ) ) |
| 5 | 4 | ralrimiva | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ≤ 𝑘 ) ) |
| 6 | 2 5 | jca | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ≤ 𝑘 ) ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ≤ 𝑘 ) ) ) |
| 8 | breq2 | ⊢ ( 𝐾 = ( lcm ‘ 𝑍 ) → ( 𝑚 ∥ 𝐾 ↔ 𝑚 ∥ ( lcm ‘ 𝑍 ) ) ) | |
| 9 | 8 | ralbidv | ⊢ ( 𝐾 = ( lcm ‘ 𝑍 ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ↔ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) ) ) |
| 10 | breq1 | ⊢ ( 𝐾 = ( lcm ‘ 𝑍 ) → ( 𝐾 ≤ 𝑘 ↔ ( lcm ‘ 𝑍 ) ≤ 𝑘 ) ) | |
| 11 | 10 | imbi2d | ⊢ ( 𝐾 = ( lcm ‘ 𝑍 ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ↔ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ≤ 𝑘 ) ) ) |
| 12 | 11 | ralbidv | ⊢ ( 𝐾 = ( lcm ‘ 𝑍 ) → ( ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ↔ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ≤ 𝑘 ) ) ) |
| 13 | 9 12 | anbi12d | ⊢ ( 𝐾 = ( lcm ‘ 𝑍 ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) ↔ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑍 ) ≤ 𝑘 ) ) ) ) |
| 14 | 7 13 | syl5ibrcom | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( 𝐾 = ( lcm ‘ 𝑍 ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) ) ) |
| 15 | lcmfn0cl | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |
| 17 | breq2 | ⊢ ( 𝑘 = ( lcm ‘ 𝑍 ) → ( 𝑚 ∥ 𝑘 ↔ 𝑚 ∥ ( lcm ‘ 𝑍 ) ) ) | |
| 18 | 17 | ralbidv | ⊢ ( 𝑘 = ( lcm ‘ 𝑍 ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) ) ) |
| 19 | breq2 | ⊢ ( 𝑘 = ( lcm ‘ 𝑍 ) → ( 𝐾 ≤ 𝑘 ↔ 𝐾 ≤ ( lcm ‘ 𝑍 ) ) ) | |
| 20 | 18 19 | imbi12d | ⊢ ( 𝑘 = ( lcm ‘ 𝑍 ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ↔ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) → 𝐾 ≤ ( lcm ‘ 𝑍 ) ) ) ) |
| 21 | 20 | rspcv | ⊢ ( ( lcm ‘ 𝑍 ) ∈ ℕ → ( ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) → 𝐾 ≤ ( lcm ‘ 𝑍 ) ) ) ) |
| 22 | 16 21 | syl | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) → 𝐾 ≤ ( lcm ‘ 𝑍 ) ) ) ) |
| 23 | 22 | adantld | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) → 𝐾 ≤ ( lcm ‘ 𝑍 ) ) ) ) |
| 24 | 2 | adantl | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) ) |
| 25 | nnre | ⊢ ( 𝐾 ∈ ℕ → 𝐾 ∈ ℝ ) | |
| 26 | 15 | nnred | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℝ ) |
| 27 | leloe | ⊢ ( ( 𝐾 ∈ ℝ ∧ ( lcm ‘ 𝑍 ) ∈ ℝ ) → ( 𝐾 ≤ ( lcm ‘ 𝑍 ) ↔ ( 𝐾 < ( lcm ‘ 𝑍 ) ∨ 𝐾 = ( lcm ‘ 𝑍 ) ) ) ) | |
| 28 | 25 26 27 | syl2an | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( 𝐾 ≤ ( lcm ‘ 𝑍 ) ↔ ( 𝐾 < ( lcm ‘ 𝑍 ) ∨ 𝐾 = ( lcm ‘ 𝑍 ) ) ) ) |
| 29 | lcmfledvds | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( ( 𝐾 ∈ ℕ ∧ ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ) → ( lcm ‘ 𝑍 ) ≤ 𝐾 ) ) | |
| 30 | 29 | expd | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( 𝐾 ∈ ℕ → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ≤ 𝐾 ) ) ) |
| 31 | 30 | impcom | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( lcm ‘ 𝑍 ) ≤ 𝐾 ) ) |
| 32 | lenlt | ⊢ ( ( ( lcm ‘ 𝑍 ) ∈ ℝ ∧ 𝐾 ∈ ℝ ) → ( ( lcm ‘ 𝑍 ) ≤ 𝐾 ↔ ¬ 𝐾 < ( lcm ‘ 𝑍 ) ) ) | |
| 33 | 26 25 32 | syl2anr | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ( lcm ‘ 𝑍 ) ≤ 𝐾 ↔ ¬ 𝐾 < ( lcm ‘ 𝑍 ) ) ) |
| 34 | pm2.21 | ⊢ ( ¬ 𝐾 < ( lcm ‘ 𝑍 ) → ( 𝐾 < ( lcm ‘ 𝑍 ) → 𝐾 = ( lcm ‘ 𝑍 ) ) ) | |
| 35 | 33 34 | biimtrdi | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ( lcm ‘ 𝑍 ) ≤ 𝐾 → ( 𝐾 < ( lcm ‘ 𝑍 ) → 𝐾 = ( lcm ‘ 𝑍 ) ) ) ) |
| 36 | 31 35 | syldc | ⊢ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 → ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( 𝐾 < ( lcm ‘ 𝑍 ) → 𝐾 = ( lcm ‘ 𝑍 ) ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) → ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( 𝐾 < ( lcm ‘ 𝑍 ) → 𝐾 = ( lcm ‘ 𝑍 ) ) ) ) |
| 38 | 37 | com13 | ⊢ ( 𝐾 < ( lcm ‘ 𝑍 ) → ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) → 𝐾 = ( lcm ‘ 𝑍 ) ) ) ) |
| 39 | 2a1 | ⊢ ( 𝐾 = ( lcm ‘ 𝑍 ) → ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) → 𝐾 = ( lcm ‘ 𝑍 ) ) ) ) | |
| 40 | 38 39 | jaoi | ⊢ ( ( 𝐾 < ( lcm ‘ 𝑍 ) ∨ 𝐾 = ( lcm ‘ 𝑍 ) ) → ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) → 𝐾 = ( lcm ‘ 𝑍 ) ) ) ) |
| 41 | 40 | com12 | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ( 𝐾 < ( lcm ‘ 𝑍 ) ∨ 𝐾 = ( lcm ‘ 𝑍 ) ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) → 𝐾 = ( lcm ‘ 𝑍 ) ) ) ) |
| 42 | 28 41 | sylbid | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( 𝐾 ≤ ( lcm ‘ 𝑍 ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) → 𝐾 = ( lcm ‘ 𝑍 ) ) ) ) |
| 43 | 24 42 | embantd | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) → 𝐾 ≤ ( lcm ‘ 𝑍 ) ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) → 𝐾 = ( lcm ‘ 𝑍 ) ) ) ) |
| 44 | 43 | com23 | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ ( lcm ‘ 𝑍 ) → 𝐾 ≤ ( lcm ‘ 𝑍 ) ) → 𝐾 = ( lcm ‘ 𝑍 ) ) ) ) |
| 45 | 23 44 | mpdd | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) → 𝐾 = ( lcm ‘ 𝑍 ) ) ) |
| 46 | 14 45 | impbid | ⊢ ( ( 𝐾 ∈ ℕ ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ) → ( 𝐾 = ( lcm ‘ 𝑍 ) ↔ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝐾 ∧ ∀ 𝑘 ∈ ℕ ( ∀ 𝑚 ∈ 𝑍 𝑚 ∥ 𝑘 → 𝐾 ≤ 𝑘 ) ) ) ) |