This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The least common multiple of a set of integers is divisible by each of its elements. (Contributed by AV, 22-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdslcmf | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ∀ 𝑥 ∈ 𝑍 𝑥 ∥ ( lcm ‘ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝑍 ⊆ ℤ → ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ ) ) | |
| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∈ 𝑍 ) → ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ ) ) |
| 3 | 2 | imp | ⊢ ( ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∈ ℤ ) |
| 4 | dvds0 | ⊢ ( 𝑥 ∈ ℤ → 𝑥 ∥ 0 ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∥ 0 ) |
| 6 | lcmf0val | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) = 0 ) | |
| 7 | 6 | ad4ant13 | ⊢ ( ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) = 0 ) |
| 8 | 5 7 | breqtrrd | ⊢ ( ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∥ ( lcm ‘ 𝑍 ) ) |
| 9 | 8 | ralrimiva | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∈ 𝑍 ) → ∀ 𝑥 ∈ 𝑍 𝑥 ∥ ( lcm ‘ 𝑍 ) ) |
| 10 | df-nel | ⊢ ( 0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍 ) | |
| 11 | lcmfcllem | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑍 𝑥 ∥ 𝑛 } ) | |
| 12 | 11 | 3expa | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑍 𝑥 ∥ 𝑛 } ) |
| 13 | 10 12 | sylan2br | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ ¬ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑍 𝑥 ∥ 𝑛 } ) |
| 14 | lcmfn0cl | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) | |
| 15 | 14 | 3expa | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |
| 16 | 10 15 | sylan2br | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ ¬ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |
| 17 | breq2 | ⊢ ( 𝑛 = ( lcm ‘ 𝑍 ) → ( 𝑥 ∥ 𝑛 ↔ 𝑥 ∥ ( lcm ‘ 𝑍 ) ) ) | |
| 18 | 17 | ralbidv | ⊢ ( 𝑛 = ( lcm ‘ 𝑍 ) → ( ∀ 𝑥 ∈ 𝑍 𝑥 ∥ 𝑛 ↔ ∀ 𝑥 ∈ 𝑍 𝑥 ∥ ( lcm ‘ 𝑍 ) ) ) |
| 19 | 18 | elrab3 | ⊢ ( ( lcm ‘ 𝑍 ) ∈ ℕ → ( ( lcm ‘ 𝑍 ) ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑍 𝑥 ∥ 𝑛 } ↔ ∀ 𝑥 ∈ 𝑍 𝑥 ∥ ( lcm ‘ 𝑍 ) ) ) |
| 20 | 16 19 | syl | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ ¬ 0 ∈ 𝑍 ) → ( ( lcm ‘ 𝑍 ) ∈ { 𝑛 ∈ ℕ ∣ ∀ 𝑥 ∈ 𝑍 𝑥 ∥ 𝑛 } ↔ ∀ 𝑥 ∈ 𝑍 𝑥 ∥ ( lcm ‘ 𝑍 ) ) ) |
| 21 | 13 20 | mpbid | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ ¬ 0 ∈ 𝑍 ) → ∀ 𝑥 ∈ 𝑍 𝑥 ∥ ( lcm ‘ 𝑍 ) ) |
| 22 | 9 21 | pm2.61dan | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ∀ 𝑥 ∈ 𝑍 𝑥 ∥ ( lcm ‘ 𝑍 ) ) |