This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmcom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = ( 𝑁 lcm 𝑀 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑀 lcm 𝑁 ) = ( 𝑁 lcm 𝑀 ) ) |
| 3 | oveq2 | ⊢ ( 𝑀 = 0 → ( 𝑁 lcm 𝑀 ) = ( 𝑁 lcm 0 ) ) | |
| 4 | lcm0val | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = 0 ) | |
| 5 | 3 4 | sylan9eqr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 = 0 ) → ( 𝑁 lcm 𝑀 ) = 0 ) |
| 6 | 5 | adantll | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑁 lcm 𝑀 ) = 0 ) |
| 7 | 2 6 | eqtrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 8 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm 0 ) ) | |
| 9 | lcm0val | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 0 ) = 0 ) | |
| 10 | 8 9 | sylan9eqr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 11 | 10 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 12 | 7 11 | jaodan | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 13 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 14 | 12 13 | eqeltrdi | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |
| 15 | lcmn0cl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ ) | |
| 16 | 15 | nnnn0d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |
| 17 | 14 16 | pm2.61dan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) |