This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for lcmfunsnlem2 . (Contributed by AV, 26-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfunsnlem2lem1 | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑘 ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) | |
| 2 | nfv | ⊢ Ⅎ 𝑘 𝑛 ∈ ℤ | |
| 3 | nfv | ⊢ Ⅎ 𝑘 ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) | |
| 4 | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) | |
| 5 | nfv | ⊢ Ⅎ 𝑘 ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) | |
| 6 | 4 5 | nfan | ⊢ Ⅎ 𝑘 ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) |
| 7 | 3 6 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) |
| 8 | 2 7 | nfan | ⊢ Ⅎ 𝑘 ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) |
| 9 | 1 8 | nfan | ⊢ Ⅎ 𝑘 ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) |
| 10 | simprr | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ℕ ) | |
| 11 | simp2 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ⊆ ℤ ) | |
| 12 | snssi | ⊢ ( 𝑧 ∈ ℤ → { 𝑧 } ⊆ ℤ ) | |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → { 𝑧 } ⊆ ℤ ) |
| 14 | 11 13 | unssd | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
| 15 | simp3 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ∈ Fin ) | |
| 16 | snfi | ⊢ { 𝑧 } ∈ Fin | |
| 17 | unfi | ⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) | |
| 18 | 15 16 17 | sylancl | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 19 | 14 18 | jca | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) ) |
| 20 | lcmfcl | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
| 22 | 21 | nn0zd | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ) |
| 23 | 22 | adantl | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ) |
| 24 | 23 | adantr | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ) |
| 25 | simprl | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → 𝑛 ∈ ℤ ) | |
| 26 | 10 24 25 | 3jca | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑘 ∈ ℕ ∧ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ) |
| 27 | 14 | adantl | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
| 28 | 18 | adantl | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 29 | df-nel | ⊢ ( 0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦 ) | |
| 30 | 29 | biimpi | ⊢ ( 0 ∉ 𝑦 → ¬ 0 ∈ 𝑦 ) |
| 31 | elsni | ⊢ ( 0 ∈ { 𝑧 } → 0 = 𝑧 ) | |
| 32 | 31 | eqcomd | ⊢ ( 0 ∈ { 𝑧 } → 𝑧 = 0 ) |
| 33 | 32 | necon3ai | ⊢ ( 𝑧 ≠ 0 → ¬ 0 ∈ { 𝑧 } ) |
| 34 | 30 33 | anim12i | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) → ( ¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ { 𝑧 } ) ) |
| 35 | 34 | 3adant3 | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ { 𝑧 } ) ) |
| 36 | df-nel | ⊢ ( 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ↔ ¬ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 37 | ioran | ⊢ ( ¬ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ { 𝑧 } ) ) | |
| 38 | elun | ⊢ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) | |
| 39 | 37 38 | xchnxbir | ⊢ ( ¬ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ { 𝑧 } ) ) |
| 40 | 36 39 | bitri | ⊢ ( 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 0 ∈ { 𝑧 } ) ) |
| 41 | 35 40 | sylibr | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ) |
| 42 | 41 | adantr | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ) |
| 43 | 27 28 42 | 3jca | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 44 | 43 | adantr | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 45 | lcmfn0cl | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 0 ∉ ( 𝑦 ∪ { 𝑧 } ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ ) | |
| 46 | 44 45 | syl | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ ) |
| 47 | 46 | nnne0d | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≠ 0 ) |
| 48 | 47 | neneqd | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → ¬ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ) |
| 49 | neneq | ⊢ ( 𝑛 ≠ 0 → ¬ 𝑛 = 0 ) | |
| 50 | 49 | 3ad2ant3 | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ¬ 𝑛 = 0 ) |
| 51 | 50 | ad2antrr | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → ¬ 𝑛 = 0 ) |
| 52 | 48 51 | jca | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → ( ¬ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∧ ¬ 𝑛 = 0 ) ) |
| 53 | ioran | ⊢ ( ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ↔ ( ¬ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∧ ¬ 𝑛 = 0 ) ) | |
| 54 | 52 53 | sylibr | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) |
| 55 | 26 54 | jca | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝑘 ∈ ℕ ∧ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) ) |
| 56 | 55 | exp43 | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 ∈ ℤ → ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ∧ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) ) ) ) ) |
| 57 | 56 | adantrd | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ∧ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) ) ) ) ) |
| 58 | 57 | com23 | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ∧ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) ) ) ) ) |
| 59 | 58 | imp32 | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( 𝑘 ∈ ℕ → ( ( 𝑘 ∈ ℕ ∧ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) ) ) |
| 60 | 59 | imp | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ∧ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) ) |
| 61 | 60 | adantr | ⊢ ( ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → ( ( 𝑘 ∈ ℕ ∧ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) ) |
| 62 | sneq | ⊢ ( 𝑛 = 𝑧 → { 𝑛 } = { 𝑧 } ) | |
| 63 | 62 | uneq2d | ⊢ ( 𝑛 = 𝑧 → ( 𝑦 ∪ { 𝑛 } ) = ( 𝑦 ∪ { 𝑧 } ) ) |
| 64 | 63 | fveq2d | ⊢ ( 𝑛 = 𝑧 → ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 65 | oveq2 | ⊢ ( 𝑛 = 𝑧 → ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) | |
| 66 | 64 65 | eqeq12d | ⊢ ( 𝑛 = 𝑧 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ↔ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 67 | 66 | rspcv | ⊢ ( 𝑧 ∈ ℤ → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 68 | 67 | 3ad2ant1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 69 | nnz | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) | |
| 70 | 69 | adantl | ⊢ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
| 71 | 70 | adantl | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → 𝑘 ∈ ℤ ) |
| 72 | lcmfcl | ⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) | |
| 73 | 72 | nn0zd | ⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 74 | 73 | 3adant1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 75 | 74 | ad2antrr | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 76 | simpll1 | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → 𝑧 ∈ ℤ ) | |
| 77 | 71 75 76 | 3jca | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) → ( 𝑘 ∈ ℤ ∧ ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 78 | 77 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → ( 𝑘 ∈ ℤ ∧ ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) |
| 79 | elun1 | ⊢ ( 𝑚 ∈ 𝑦 → 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 80 | 79 | orcd | ⊢ ( 𝑚 ∈ 𝑦 → ( 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑚 ∈ { 𝑛 } ) ) |
| 81 | elun | ⊢ ( 𝑚 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑚 ∈ { 𝑛 } ) ) | |
| 82 | 80 81 | sylibr | ⊢ ( 𝑚 ∈ 𝑦 → 𝑚 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
| 83 | breq1 | ⊢ ( 𝑖 = 𝑚 → ( 𝑖 ∥ 𝑘 ↔ 𝑚 ∥ 𝑘 ) ) | |
| 84 | 83 | rspcv | ⊢ ( 𝑚 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → 𝑚 ∥ 𝑘 ) ) |
| 85 | 82 84 | syl | ⊢ ( 𝑚 ∈ 𝑦 → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → 𝑚 ∥ 𝑘 ) ) |
| 86 | 85 | com12 | ⊢ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( 𝑚 ∈ 𝑦 → 𝑚 ∥ 𝑘 ) ) |
| 87 | 86 | adantl | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → ( 𝑚 ∈ 𝑦 → 𝑚 ∥ 𝑘 ) ) |
| 88 | 87 | ralrimiv | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ) |
| 89 | 88 | adantr | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) ∧ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) ) → ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ) |
| 90 | breq2 | ⊢ ( 𝑘 = 𝑙 → ( 𝑚 ∥ 𝑘 ↔ 𝑚 ∥ 𝑙 ) ) | |
| 91 | 90 | ralbidv | ⊢ ( 𝑘 = 𝑙 → ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ↔ ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 ) ) |
| 92 | breq2 | ⊢ ( 𝑘 = 𝑙 → ( ( lcm ‘ 𝑦 ) ∥ 𝑘 ↔ ( lcm ‘ 𝑦 ) ∥ 𝑙 ) ) | |
| 93 | 91 92 | imbi12d | ⊢ ( 𝑘 = 𝑙 → ( ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ↔ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → ( lcm ‘ 𝑦 ) ∥ 𝑙 ) ) ) |
| 94 | 93 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ↔ ∀ 𝑙 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → ( lcm ‘ 𝑦 ) ∥ 𝑙 ) ) |
| 95 | 70 | adantr | ⊢ ( ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → 𝑘 ∈ ℤ ) |
| 96 | 95 | adantl | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) ∧ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) ) → 𝑘 ∈ ℤ ) |
| 97 | breq2 | ⊢ ( 𝑙 = 𝑘 → ( 𝑚 ∥ 𝑙 ↔ 𝑚 ∥ 𝑘 ) ) | |
| 98 | 97 | ralbidv | ⊢ ( 𝑙 = 𝑘 → ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 ↔ ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 ) ) |
| 99 | breq2 | ⊢ ( 𝑙 = 𝑘 → ( ( lcm ‘ 𝑦 ) ∥ 𝑙 ↔ ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) | |
| 100 | 98 99 | imbi12d | ⊢ ( 𝑙 = 𝑘 → ( ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → ( lcm ‘ 𝑦 ) ∥ 𝑙 ) ↔ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 101 | 100 | rspcv | ⊢ ( 𝑘 ∈ ℤ → ( ∀ 𝑙 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → ( lcm ‘ 𝑦 ) ∥ 𝑙 ) → ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 102 | 96 101 | syl | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) ∧ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) ) → ( ∀ 𝑙 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑙 → ( lcm ‘ 𝑦 ) ∥ 𝑙 ) → ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 103 | 94 102 | biimtrid | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) ∧ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) → ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 104 | 89 103 | mpid | ⊢ ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) ∧ ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) |
| 105 | 104 | exp31 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) ) |
| 106 | 105 | com24 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) → ( ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) ) |
| 107 | 106 | imp | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) → ( ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ) |
| 108 | 107 | impl | ⊢ ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) |
| 109 | 108 | imp | ⊢ ( ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) |
| 110 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
| 111 | 110 | olci | ⊢ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) |
| 112 | elun | ⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 𝑧 ∈ 𝑦 ∨ 𝑧 ∈ { 𝑧 } ) ) | |
| 113 | 111 112 | mpbir | ⊢ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) |
| 114 | 113 | orci | ⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑧 ∈ { 𝑛 } ) |
| 115 | elun | ⊢ ( 𝑧 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑧 ∈ { 𝑛 } ) ) | |
| 116 | 114 115 | mpbir | ⊢ 𝑧 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) |
| 117 | breq1 | ⊢ ( 𝑖 = 𝑧 → ( 𝑖 ∥ 𝑘 ↔ 𝑧 ∥ 𝑘 ) ) | |
| 118 | 117 | rspcv | ⊢ ( 𝑧 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → 𝑧 ∥ 𝑘 ) ) |
| 119 | 116 118 | mp1i | ⊢ ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → 𝑧 ∥ 𝑘 ) ) |
| 120 | 119 | imp | ⊢ ( ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → 𝑧 ∥ 𝑘 ) |
| 121 | 109 120 | jca | ⊢ ( ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → ( ( lcm ‘ 𝑦 ) ∥ 𝑘 ∧ 𝑧 ∥ 𝑘 ) ) |
| 122 | lcmdvds | ⊢ ( ( 𝑘 ∈ ℤ ∧ ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( lcm ‘ 𝑦 ) ∥ 𝑘 ∧ 𝑧 ∥ 𝑘 ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ 𝑘 ) ) | |
| 123 | 78 121 122 | sylc | ⊢ ( ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ 𝑘 ) |
| 124 | breq1 | ⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ↔ ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ∥ 𝑘 ) ) | |
| 125 | 123 124 | imbitrrid | ⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) |
| 126 | 125 | expd | ⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( ( ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ) ∧ ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) ) ∧ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) |
| 127 | 126 | exp5j | ⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) → ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) ) ) |
| 128 | 127 | com12 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) → ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) ) ) |
| 129 | 68 128 | syld | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) → ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) ) ) |
| 130 | 129 | com23 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) → ( ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) → ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) ) ) |
| 131 | 130 | imp32 | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ( 𝑛 ∈ ℤ ∧ 𝑘 ∈ ℕ ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) |
| 132 | 131 | expd | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( 𝑘 ∈ ℕ → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) ) |
| 133 | 132 | com34 | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( 𝑘 ∈ ℕ → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) ) |
| 134 | 133 | com12 | ⊢ ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( 𝑘 ∈ ℕ → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) ) |
| 135 | 134 | imp | ⊢ ( ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) → ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( 𝑘 ∈ ℕ → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) |
| 136 | 135 | com12 | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) → ( ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) → ( 𝑘 ∈ ℕ → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) ) |
| 137 | 136 | imp | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( 𝑘 ∈ ℕ → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) ) |
| 138 | 137 | imp | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) ) |
| 139 | 138 | imp | ⊢ ( ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ) |
| 140 | vsnid | ⊢ 𝑛 ∈ { 𝑛 } | |
| 141 | 140 | olci | ⊢ ( 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑛 ∈ { 𝑛 } ) |
| 142 | elun | ⊢ ( 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 𝑛 ∈ { 𝑛 } ) ) | |
| 143 | 141 142 | mpbir | ⊢ 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) |
| 144 | breq1 | ⊢ ( 𝑖 = 𝑛 → ( 𝑖 ∥ 𝑘 ↔ 𝑛 ∥ 𝑘 ) ) | |
| 145 | 144 | rspcv | ⊢ ( 𝑛 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → 𝑛 ∥ 𝑘 ) ) |
| 146 | 143 145 | mp1i | ⊢ ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → 𝑛 ∥ 𝑘 ) ) |
| 147 | 146 | imp | ⊢ ( ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → 𝑛 ∥ 𝑘 ) |
| 148 | 139 147 | jca | ⊢ ( ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ∧ 𝑛 ∥ 𝑘 ) ) |
| 149 | lcmledvds | ⊢ ( ( ( 𝑘 ∈ ℕ ∧ ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) ∧ ¬ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ∨ 𝑛 = 0 ) ) → ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∥ 𝑘 ∧ 𝑛 ∥ 𝑘 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) | |
| 150 | 61 148 149 | sylc | ⊢ ( ( ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) ∧ 𝑘 ∈ ℕ ) ∧ ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) |
| 151 | 150 | exp31 | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( 𝑘 ∈ ℕ → ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) ) |
| 152 | 9 151 | ralrimi | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ∀ 𝑘 ∈ ℕ ( ∀ 𝑖 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) 𝑖 ∥ 𝑘 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ≤ 𝑘 ) ) |