This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lcmfunsn and lcmfunsnlem (Induction step part 2). (Contributed by AV, 26-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfunsnlem2 | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑛 ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) | |
| 2 | nfv | ⊢ Ⅎ 𝑛 ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) | |
| 3 | nfra1 | ⊢ Ⅎ 𝑛 ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) | |
| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑛 ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) |
| 5 | 1 4 | nfan | ⊢ Ⅎ 𝑛 ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) |
| 6 | 0z | ⊢ 0 ∈ ℤ | |
| 7 | eqoreldif | ⊢ ( 0 ∈ ℤ → ( 𝑛 ∈ ℤ ↔ ( 𝑛 = 0 ∨ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( 𝑛 ∈ ℤ ↔ ( 𝑛 = 0 ∨ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ) |
| 9 | simp2 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ⊆ ℤ ) | |
| 10 | snssi | ⊢ ( 𝑧 ∈ ℤ → { 𝑧 } ⊆ ℤ ) | |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → { 𝑧 } ⊆ ℤ ) |
| 12 | 9 11 | unssd | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
| 13 | snssi | ⊢ ( 0 ∈ ℤ → { 0 } ⊆ ℤ ) | |
| 14 | 6 13 | mp1i | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → { 0 } ⊆ ℤ ) |
| 15 | 12 14 | unssd | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ⊆ ℤ ) |
| 16 | c0ex | ⊢ 0 ∈ V | |
| 17 | 16 | snid | ⊢ 0 ∈ { 0 } |
| 18 | 17 | olci | ⊢ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 0 } ) |
| 19 | elun | ⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ↔ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 0 } ) ) | |
| 20 | 18 19 | mpbir | ⊢ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) |
| 21 | lcmf0val | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ⊆ ℤ ∧ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) = 0 ) | |
| 22 | 15 20 21 | sylancl | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) = 0 ) |
| 23 | 22 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) = 0 ) |
| 24 | sneq | ⊢ ( 𝑛 = 0 → { 𝑛 } = { 0 } ) | |
| 25 | 24 | adantl | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → { 𝑛 } = { 0 } ) |
| 26 | 25 | uneq2d | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) = ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) |
| 27 | 26 | fveq2d | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 0 } ) ) ) |
| 28 | oveq2 | ⊢ ( 𝑛 = 0 → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 0 ) ) | |
| 29 | snfi | ⊢ { 𝑧 } ∈ Fin | |
| 30 | unfi | ⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) | |
| 31 | 29 30 | mpan2 | ⊢ ( 𝑦 ∈ Fin → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 32 | 31 | 3ad2ant3 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 33 | lcmfcl | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) | |
| 34 | 12 32 33 | syl2anc | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
| 35 | 34 | nn0zd | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ) |
| 36 | lcm0val | ⊢ ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 0 ) = 0 ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 0 ) = 0 ) |
| 38 | 28 37 | sylan9eqr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = 0 ) |
| 39 | 23 27 38 | 3eqtr4d | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ 𝑛 = 0 ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
| 40 | 39 | ex | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑛 = 0 → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 = 0 → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 42 | 41 | com12 | ⊢ ( 𝑛 = 0 → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 43 | 9 | adantl | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 𝑦 ⊆ ℤ ) |
| 44 | 11 | adantl | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → { 𝑧 } ⊆ ℤ ) |
| 45 | 43 44 | unssd | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
| 46 | elun1 | ⊢ ( 0 ∈ 𝑦 → 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 47 | 46 | ad2antrr | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 48 | lcmf0val | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ) | |
| 49 | 45 47 48 | syl2anc | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ) |
| 50 | 49 | oveq2d | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( 𝑛 lcm 0 ) ) |
| 51 | eldifi | ⊢ ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → 𝑛 ∈ ℤ ) | |
| 52 | lcm0val | ⊢ ( 𝑛 ∈ ℤ → ( 𝑛 lcm 0 ) = 0 ) | |
| 53 | 51 52 | syl | ⊢ ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( 𝑛 lcm 0 ) = 0 ) |
| 54 | 53 | ad2antlr | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm 0 ) = 0 ) |
| 55 | 50 54 | eqtrd | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = 0 ) |
| 56 | simp3 | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → 𝑦 ∈ Fin ) | |
| 57 | 56 29 30 | sylancl | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 58 | 12 57 33 | syl2anc | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
| 59 | 58 | nn0zd | ⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ) |
| 60 | 51 | adantl | ⊢ ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) → 𝑛 ∈ ℤ ) |
| 61 | lcmcom | ⊢ ( ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) | |
| 62 | 59 60 61 | syl2anr | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 63 | 12 | adantl | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
| 64 | 51 | snssd | ⊢ ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → { 𝑛 } ⊆ ℤ ) |
| 65 | 64 | ad2antlr | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → { 𝑛 } ⊆ ℤ ) |
| 66 | 63 65 | unssd | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ) |
| 67 | 46 | orcd | ⊢ ( 0 ∈ 𝑦 → ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) ) |
| 68 | elun | ⊢ ( 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ↔ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) ) | |
| 69 | 67 68 | sylibr | ⊢ ( 0 ∈ 𝑦 → 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
| 70 | 69 | ad2antrr | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
| 71 | lcmf0val | ⊢ ( ( ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ∧ 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = 0 ) | |
| 72 | 66 70 71 | syl2anc | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = 0 ) |
| 73 | 55 62 72 | 3eqtr4rd | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
| 74 | 73 | a1d | ⊢ ( ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 75 | 74 | expimpd | ⊢ ( ( 0 ∈ 𝑦 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 76 | 75 | ex | ⊢ ( 0 ∈ 𝑦 → ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 77 | elsng | ⊢ ( 0 ∈ ℤ → ( 0 ∈ { 𝑧 } ↔ 0 = 𝑧 ) ) | |
| 78 | eqcom | ⊢ ( 0 = 𝑧 ↔ 𝑧 = 0 ) | |
| 79 | 77 78 | bitrdi | ⊢ ( 0 ∈ ℤ → ( 0 ∈ { 𝑧 } ↔ 𝑧 = 0 ) ) |
| 80 | 6 79 | ax-mp | ⊢ ( 0 ∈ { 𝑧 } ↔ 𝑧 = 0 ) |
| 81 | 80 | biimpri | ⊢ ( 𝑧 = 0 → 0 ∈ { 𝑧 } ) |
| 82 | 81 | ad2antrr | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ { 𝑧 } ) |
| 83 | 82 | olcd | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) |
| 84 | elun | ⊢ ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ↔ ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) | |
| 85 | 83 84 | sylibr | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 86 | 12 85 48 | syl2an2 | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = 0 ) |
| 87 | 86 | oveq2d | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( 𝑛 lcm 0 ) ) |
| 88 | 51 | ad2antlr | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 𝑛 ∈ ℤ ) |
| 89 | 88 52 | syl | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm 0 ) = 0 ) |
| 90 | 87 89 | eqtrd | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = 0 ) |
| 91 | 59 88 61 | syl2an2 | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) = ( 𝑛 lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 92 | 12 | adantl | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) |
| 93 | 64 | ad2antlr | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → { 𝑛 } ⊆ ℤ ) |
| 94 | 92 93 | unssd | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ⊆ ℤ ) |
| 95 | sneq | ⊢ ( 𝑧 = 0 → { 𝑧 } = { 0 } ) | |
| 96 | 17 95 | eleqtrrid | ⊢ ( 𝑧 = 0 → 0 ∈ { 𝑧 } ) |
| 97 | 96 | ad2antrr | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ { 𝑧 } ) |
| 98 | 97 | olcd | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 0 ∈ 𝑦 ∨ 0 ∈ { 𝑧 } ) ) |
| 99 | 98 84 | sylibr | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 100 | 99 | orcd | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( 0 ∈ ( 𝑦 ∪ { 𝑧 } ) ∨ 0 ∈ { 𝑛 } ) ) |
| 101 | 100 68 | sylibr | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → 0 ∈ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) |
| 102 | 94 101 71 | syl2anc | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = 0 ) |
| 103 | 90 91 102 | 3eqtr4rd | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |
| 104 | 103 | a1d | ⊢ ( ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) → ( ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 105 | 104 | expimpd | ⊢ ( ( 𝑧 = 0 ∧ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 106 | 105 | ex | ⊢ ( 𝑧 = 0 → ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 107 | ioran | ⊢ ( ¬ ( 0 ∈ 𝑦 ∨ 𝑧 = 0 ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0 ) ) | |
| 108 | df-nel | ⊢ ( 0 ∉ 𝑦 ↔ ¬ 0 ∈ 𝑦 ) | |
| 109 | df-ne | ⊢ ( 𝑧 ≠ 0 ↔ ¬ 𝑧 = 0 ) | |
| 110 | 108 109 | anbi12i | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) ↔ ( ¬ 0 ∈ 𝑦 ∧ ¬ 𝑧 = 0 ) ) |
| 111 | 107 110 | bitr4i | ⊢ ( ¬ ( 0 ∈ 𝑦 ∨ 𝑧 = 0 ) ↔ ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) ) |
| 112 | eldif | ⊢ ( 𝑛 ∈ ( ℤ ∖ { 0 } ) ↔ ( 𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ { 0 } ) ) | |
| 113 | velsn | ⊢ ( 𝑛 ∈ { 0 } ↔ 𝑛 = 0 ) | |
| 114 | 113 | bicomi | ⊢ ( 𝑛 = 0 ↔ 𝑛 ∈ { 0 } ) |
| 115 | 114 | necon3abii | ⊢ ( 𝑛 ≠ 0 ↔ ¬ 𝑛 ∈ { 0 } ) |
| 116 | lcmfunsnlem2lem2 | ⊢ ( ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ∧ 𝑛 ≠ 0 ) ∧ ( 𝑛 ∈ ℤ ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) | |
| 117 | 116 | exp520 | ⊢ ( 0 ∉ 𝑦 → ( 𝑧 ≠ 0 → ( 𝑛 ≠ 0 → ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) ) |
| 118 | 117 | imp | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) → ( 𝑛 ≠ 0 → ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 119 | 115 118 | biimtrrid | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) → ( ¬ 𝑛 ∈ { 0 } → ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) ) |
| 120 | 119 | impcomd | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) → ( ( 𝑛 ∈ ℤ ∧ ¬ 𝑛 ∈ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 121 | 112 120 | biimtrid | ⊢ ( ( 0 ∉ 𝑦 ∧ 𝑧 ≠ 0 ) → ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 122 | 111 121 | sylbi | ⊢ ( ¬ ( 0 ∈ 𝑦 ∨ 𝑧 = 0 ) → ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) ) |
| 123 | 76 106 122 | ecase3 | ⊢ ( 𝑛 ∈ ( ℤ ∖ { 0 } ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 124 | 42 123 | jaoi | ⊢ ( ( 𝑛 = 0 ∨ 𝑛 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 125 | 8 124 | sylbi | ⊢ ( 𝑛 ∈ ℤ → ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 126 | 125 | com12 | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ( 𝑛 ∈ ℤ → ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) ) |
| 127 | 5 126 | ralrimi | ⊢ ( ( ( 𝑧 ∈ ℤ ∧ 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ∧ ( ∀ 𝑘 ∈ ℤ ( ∀ 𝑚 ∈ 𝑦 𝑚 ∥ 𝑘 → ( lcm ‘ 𝑦 ) ∥ 𝑘 ) ∧ ∀ 𝑛 ∈ ℤ ( lcm ‘ ( 𝑦 ∪ { 𝑛 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑛 ) ) ) → ∀ 𝑛 ∈ ℤ ( lcm ‘ ( ( 𝑦 ∪ { 𝑧 } ) ∪ { 𝑛 } ) ) = ( ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) lcm 𝑛 ) ) |