This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the _lcm function. (Contributed by AV, 21-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfcl | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmf0val | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) = 0 ) | |
| 2 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 3 | 1 2 | eqeltrdi | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ0 ) |
| 4 | 3 | adantlr | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ0 ) |
| 5 | df-nel | ⊢ ( 0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍 ) | |
| 6 | lcmfn0cl | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) | |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |
| 8 | 5 7 | sylan2br | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ ¬ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |
| 9 | 8 | nnnn0d | ⊢ ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ∧ ¬ 0 ∈ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ0 ) |
| 10 | 4 9 | pm2.61dan | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) ∈ ℕ0 ) |