This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm of two integers is divisible by each of them. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdslcm | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvds0 | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∥ 0 ) | |
| 2 | 1 | ad2antrr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → 𝑀 ∥ 0 ) |
| 3 | oveq1 | ⊢ ( 𝑀 = 0 → ( 𝑀 lcm 𝑁 ) = ( 0 lcm 𝑁 ) ) | |
| 4 | 0z | ⊢ 0 ∈ ℤ | |
| 5 | lcmcom | ⊢ ( ( 𝑁 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 𝑁 lcm 0 ) = ( 0 lcm 𝑁 ) ) | |
| 6 | 4 5 | mpan2 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = ( 0 lcm 𝑁 ) ) |
| 7 | lcm0val | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = 0 ) | |
| 8 | 6 7 | eqtr3d | ⊢ ( 𝑁 ∈ ℤ → ( 0 lcm 𝑁 ) = 0 ) |
| 9 | 3 8 | sylan9eqr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 10 | 9 | adantll | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 11 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm 0 ) ) | |
| 12 | lcm0val | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 lcm 0 ) = 0 ) | |
| 13 | 11 12 | sylan9eqr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 14 | 13 | adantlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 15 | 10 14 | jaodan | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = 0 ) |
| 16 | 2 15 | breqtrrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 17 | dvds0 | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∥ 0 ) | |
| 18 | 17 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → 𝑁 ∥ 0 ) |
| 19 | 18 15 | breqtrrd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) |
| 20 | 16 19 | jca | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 21 | lcmcllem | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ) | |
| 22 | lcmn0cl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ ) | |
| 23 | breq2 | ⊢ ( 𝑛 = ( 𝑀 lcm 𝑁 ) → ( 𝑀 ∥ 𝑛 ↔ 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ) ) | |
| 24 | breq2 | ⊢ ( 𝑛 = ( 𝑀 lcm 𝑁 ) → ( 𝑁 ∥ 𝑛 ↔ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) | |
| 25 | 23 24 | anbi12d | ⊢ ( 𝑛 = ( 𝑀 lcm 𝑁 ) → ( ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) ↔ ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 26 | 25 | elrab3 | ⊢ ( ( 𝑀 lcm 𝑁 ) ∈ ℕ → ( ( 𝑀 lcm 𝑁 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ↔ ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 27 | 22 26 | syl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 lcm 𝑁 ) ∈ { 𝑛 ∈ ℕ ∣ ( 𝑀 ∥ 𝑛 ∧ 𝑁 ∥ 𝑛 ) } ↔ ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 28 | 21 27 | mpbid | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 29 | 20 28 | pm2.61dan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |