This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019) (Revised by Thierry Arnoux, 14-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgpowd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| itgpowd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| itgpowd.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| itgpowd.4 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| Assertion | itgpowd | ⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 = ( ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgpowd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | itgpowd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | itgpowd.3 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 4 | itgpowd.4 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 5 | nn0p1nn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ ) |
| 7 | 6 | nncnd | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℂ ) |
| 8 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 9 | 1 2 8 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 10 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 11 | 9 10 | sstrdi | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℂ ) |
| 12 | 11 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑥 ∈ ℂ ) |
| 13 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑁 ∈ ℕ0 ) |
| 14 | 12 13 | expcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑥 ↑ 𝑁 ) ∈ ℂ ) |
| 15 | 11 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ) |
| 16 | expcncf | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) | |
| 17 | 4 16 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 18 | rescncf | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) | |
| 19 | 11 17 18 | sylc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 20 | 15 19 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 21 | cnicciblnc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ 𝐿1 ) | |
| 22 | 1 2 20 21 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ 𝐿1 ) |
| 23 | 14 22 | itgcl | ⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 ∈ ℂ ) |
| 24 | 6 | nnne0d | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ≠ 0 ) |
| 25 | 7 14 22 | itgmulc2 | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 ) = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 ) |
| 26 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) | |
| 27 | oveq1 | ⊢ ( 𝑡 = 𝑥 → ( 𝑡 ↑ 𝑁 ) = ( 𝑥 ↑ 𝑁 ) ) | |
| 28 | 27 | oveq2d | ⊢ ( 𝑡 = 𝑥 → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) = ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ) |
| 29 | 28 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) ∧ 𝑡 = 𝑥 ) → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) = ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ) |
| 30 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 31 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑁 + 1 ) ∈ ℂ ) |
| 32 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 33 | 32 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 34 | 33 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 35 | 34 14 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( 𝑥 ↑ 𝑁 ) ∈ ℂ ) |
| 36 | 31 35 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ∈ ℂ ) |
| 37 | 26 29 30 36 | fvmptd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ) → ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) = ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ) |
| 38 | 37 | itgeq2dv | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 ) |
| 39 | reelprrecn | ⊢ ℝ ∈ { ℝ , ℂ } | |
| 40 | 39 | a1i | ⊢ ( 𝜑 → ℝ ∈ { ℝ , ℂ } ) |
| 41 | 10 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 42 | 41 | sselda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℂ ) |
| 43 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 44 | 43 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 45 | 4 44 | nn0addcld | ⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 47 | 42 46 | expcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑡 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 48 | 4 | nn0cnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑁 ∈ ℂ ) |
| 50 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 1 ∈ ℂ ) | |
| 51 | 49 50 | addcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑁 + 1 ) ∈ ℂ ) |
| 52 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → 𝑁 ∈ ℕ0 ) |
| 53 | 42 52 | expcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( 𝑡 ↑ 𝑁 ) ∈ ℂ ) |
| 54 | 51 53 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℝ ) → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ∈ ℂ ) |
| 55 | simpr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → 𝑡 ∈ ℂ ) | |
| 56 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 57 | 55 56 | expcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑡 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 58 | 57 | fmpttd | ⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) : ℂ ⟶ ℂ ) |
| 59 | ssidd | ⊢ ( 𝜑 → ℂ ⊆ ℂ ) | |
| 60 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑁 + 1 ) ∈ ℂ ) |
| 61 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
| 62 | 55 61 | expcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( 𝑡 ↑ 𝑁 ) ∈ ℂ ) |
| 63 | 60 62 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ℂ ) → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ∈ ℂ ) |
| 64 | 63 | fmpttd | ⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) : ℂ ⟶ ℂ ) |
| 65 | dvexp | ⊢ ( ( 𝑁 + 1 ) ∈ ℕ → ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) ) ) | |
| 66 | 6 65 | syl | ⊢ ( 𝜑 → ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) ) ) |
| 67 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 68 | 48 67 | pncand | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 69 | 68 | oveq2d | ⊢ ( 𝜑 → ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) = ( 𝑡 ↑ 𝑁 ) ) |
| 70 | 69 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) = ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) |
| 71 | 70 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ ( ( 𝑁 + 1 ) − 1 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
| 72 | 66 71 | eqtrd | ⊢ ( 𝜑 → ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
| 73 | 72 | feq1d | ⊢ ( 𝜑 → ( ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) : ℂ ⟶ ℂ ↔ ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) : ℂ ⟶ ℂ ) ) |
| 74 | 64 73 | mpbird | ⊢ ( 𝜑 → ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) : ℂ ⟶ ℂ ) |
| 75 | 74 | fdmd | ⊢ ( 𝜑 → dom ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ℂ ) |
| 76 | 10 75 | sseqtrrid | ⊢ ( 𝜑 → ℝ ⊆ dom ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 77 | dvres3 | ⊢ ( ( ( ℝ ∈ { ℝ , ℂ } ∧ ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) : ℂ ⟶ ℂ ) ∧ ( ℂ ⊆ ℂ ∧ ℝ ⊆ dom ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ) ) → ( ℝ D ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) ) = ( ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ↾ ℝ ) ) | |
| 78 | 40 58 59 76 77 | syl22anc | ⊢ ( 𝜑 → ( ℝ D ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) ) = ( ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ↾ ℝ ) ) |
| 79 | 72 | reseq1d | ⊢ ( 𝜑 → ( ( ℂ D ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ↾ ℝ ) = ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ↾ ℝ ) ) |
| 80 | 78 79 | eqtrd | ⊢ ( 𝜑 → ( ℝ D ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) ) = ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ↾ ℝ ) ) |
| 81 | resmpt | ⊢ ( ℝ ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) = ( 𝑡 ∈ ℝ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) | |
| 82 | 10 81 | mp1i | ⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) = ( 𝑡 ∈ ℝ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) |
| 83 | 82 | oveq2d | ⊢ ( 𝜑 → ( ℝ D ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ℝ ) ) = ( ℝ D ( 𝑡 ∈ ℝ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ) |
| 84 | resmpt | ⊢ ( ℝ ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ↾ ℝ ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) | |
| 85 | 10 84 | mp1i | ⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ↾ ℝ ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
| 86 | 80 83 85 | 3eqtr3d | ⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ℝ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ℝ ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
| 87 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 88 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 89 | iccntr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) | |
| 90 | 1 2 89 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐴 (,) 𝐵 ) ) |
| 91 | 40 47 54 86 9 87 88 90 | dvmptres2 | ⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ) |
| 92 | ioossre | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℝ | |
| 93 | 92 10 | sstri | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ℂ |
| 94 | 93 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ℂ ) |
| 95 | cncfmptc | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℂ ∧ ( 𝐴 (,) 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑁 + 1 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) | |
| 96 | 7 94 59 95 | syl3anc | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑁 + 1 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 97 | resmpt | ⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ) | |
| 98 | 93 97 | mp1i | ⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ) |
| 99 | expcncf | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) | |
| 100 | 4 99 | syl | ⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 101 | rescncf | ⊢ ( ( 𝐴 (,) 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) ) | |
| 102 | 94 100 101 | sylc | ⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 (,) 𝐵 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 103 | 98 102 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 104 | 96 103 | mulcncf | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 105 | 91 104 | eqeltrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ∈ ( ( 𝐴 (,) 𝐵 ) –cn→ ℂ ) ) |
| 106 | ioombl | ⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol | |
| 107 | 106 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 108 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑁 ∈ ℂ ) |
| 109 | 1cnd | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 1 ∈ ℂ ) | |
| 110 | 108 109 | addcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑁 + 1 ) ∈ ℂ ) |
| 111 | 11 | sselda | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑡 ∈ ℂ ) |
| 112 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝑁 ∈ ℕ0 ) |
| 113 | 111 112 | expcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑡 ↑ 𝑁 ) ∈ ℂ ) |
| 114 | 110 113 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ∈ ℂ ) |
| 115 | cncfmptc | ⊢ ( ( ( 𝑁 + 1 ) ∈ ℂ ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑁 + 1 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | |
| 116 | 7 11 59 115 | syl3anc | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑁 + 1 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 117 | 11 | resmptd | ⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ) |
| 118 | rescncf | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) | |
| 119 | 11 100 118 | sylc | ⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ 𝑁 ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 120 | 117 119 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ 𝑁 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 121 | 116 120 | mulcncf | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 122 | cnicciblnc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ 𝐿1 ) | |
| 123 | 1 2 121 122 | syl3anc | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ 𝐿1 ) |
| 124 | 33 107 114 123 | iblss | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ∈ 𝐿1 ) |
| 125 | 91 124 | eqeltrd | ⊢ ( 𝜑 → ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ∈ 𝐿1 ) |
| 126 | 11 | resmptd | ⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) |
| 127 | expcncf | ⊢ ( ( 𝑁 + 1 ) ∈ ℕ0 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) | |
| 128 | 45 127 | syl | ⊢ ( 𝜑 → ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| 129 | rescncf | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℂ → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ∈ ( ℂ –cn→ ℂ ) → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) ) | |
| 130 | 11 128 129 | sylc | ⊢ ( 𝜑 → ( ( 𝑡 ∈ ℂ ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ↾ ( 𝐴 [,] 𝐵 ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 131 | 126 130 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) |
| 132 | 1 2 3 105 125 131 | ftc2 | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐵 ) − ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐴 ) ) ) |
| 133 | 91 | fveq1d | ⊢ ( 𝜑 → ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) = ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) ) |
| 134 | 133 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) = ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) ) |
| 135 | itgeq2 | ⊢ ( ∀ 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) = ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) d 𝑥 ) | |
| 136 | 134 135 | syl | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( ℝ D ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) ‘ 𝑥 ) d 𝑥 = ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) d 𝑥 ) |
| 137 | eqidd | ⊢ ( 𝜑 → ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) = ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ) | |
| 138 | simpr | ⊢ ( ( 𝜑 ∧ 𝑡 = 𝐵 ) → 𝑡 = 𝐵 ) | |
| 139 | 138 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑡 = 𝐵 ) → ( 𝑡 ↑ ( 𝑁 + 1 ) ) = ( 𝐵 ↑ ( 𝑁 + 1 ) ) ) |
| 140 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 141 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 142 | ubicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 143 | 140 141 3 142 | syl3anc | ⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 144 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 145 | 144 45 | expcld | ⊢ ( 𝜑 → ( 𝐵 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 146 | 137 139 143 145 | fvmptd | ⊢ ( 𝜑 → ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐵 ) = ( 𝐵 ↑ ( 𝑁 + 1 ) ) ) |
| 147 | simpr | ⊢ ( ( 𝜑 ∧ 𝑡 = 𝐴 ) → 𝑡 = 𝐴 ) | |
| 148 | 147 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑡 = 𝐴 ) → ( 𝑡 ↑ ( 𝑁 + 1 ) ) = ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) |
| 149 | lbicc2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) | |
| 150 | 140 141 3 149 | syl3anc | ⊢ ( 𝜑 → 𝐴 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 151 | 1 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 152 | 151 45 | expcld | ⊢ ( 𝜑 → ( 𝐴 ↑ ( 𝑁 + 1 ) ) ∈ ℂ ) |
| 153 | 137 148 150 152 | fvmptd | ⊢ ( 𝜑 → ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐴 ) = ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) |
| 154 | 146 153 | oveq12d | ⊢ ( 𝜑 → ( ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐵 ) − ( ( 𝑡 ∈ ( 𝐴 [,] 𝐵 ) ↦ ( 𝑡 ↑ ( 𝑁 + 1 ) ) ) ‘ 𝐴 ) ) = ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) ) |
| 155 | 132 136 154 | 3eqtr3d | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑡 ∈ ( 𝐴 (,) 𝐵 ) ↦ ( ( 𝑁 + 1 ) · ( 𝑡 ↑ 𝑁 ) ) ) ‘ 𝑥 ) d 𝑥 = ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) ) |
| 156 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( 𝑁 + 1 ) ∈ ℂ ) |
| 157 | 156 14 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) ∈ ℂ ) |
| 158 | 1 2 157 | itgioo | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 ) |
| 159 | 38 155 158 | 3eqtr3rd | ⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( ( 𝑁 + 1 ) · ( 𝑥 ↑ 𝑁 ) ) d 𝑥 = ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) ) |
| 160 | 25 159 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑁 + 1 ) · ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 ) = ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) ) |
| 161 | 7 23 24 160 | mvllmuld | ⊢ ( 𝜑 → ∫ ( 𝐴 [,] 𝐵 ) ( 𝑥 ↑ 𝑁 ) d 𝑥 = ( ( ( 𝐵 ↑ ( 𝑁 + 1 ) ) − ( 𝐴 ↑ ( 𝑁 + 1 ) ) ) / ( 𝑁 + 1 ) ) ) |