This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integral of a monomial on a closed bounded interval of the real line. Co-authors TA and MC. (Contributed by Jon Pennant, 31-May-2019) (Revised by Thierry Arnoux, 14-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgpowd.1 | |- ( ph -> A e. RR ) |
|
| itgpowd.2 | |- ( ph -> B e. RR ) |
||
| itgpowd.3 | |- ( ph -> A <_ B ) |
||
| itgpowd.4 | |- ( ph -> N e. NN0 ) |
||
| Assertion | itgpowd | |- ( ph -> S. ( A [,] B ) ( x ^ N ) _d x = ( ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgpowd.1 | |- ( ph -> A e. RR ) |
|
| 2 | itgpowd.2 | |- ( ph -> B e. RR ) |
|
| 3 | itgpowd.3 | |- ( ph -> A <_ B ) |
|
| 4 | itgpowd.4 | |- ( ph -> N e. NN0 ) |
|
| 5 | nn0p1nn | |- ( N e. NN0 -> ( N + 1 ) e. NN ) |
|
| 6 | 4 5 | syl | |- ( ph -> ( N + 1 ) e. NN ) |
| 7 | 6 | nncnd | |- ( ph -> ( N + 1 ) e. CC ) |
| 8 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 9 | 1 2 8 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 10 | ax-resscn | |- RR C_ CC |
|
| 11 | 9 10 | sstrdi | |- ( ph -> ( A [,] B ) C_ CC ) |
| 12 | 11 | sselda | |- ( ( ph /\ x e. ( A [,] B ) ) -> x e. CC ) |
| 13 | 4 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> N e. NN0 ) |
| 14 | 12 13 | expcld | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( x ^ N ) e. CC ) |
| 15 | 11 | resmptd | |- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) |` ( A [,] B ) ) = ( x e. ( A [,] B ) |-> ( x ^ N ) ) ) |
| 16 | expcncf | |- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) |
|
| 17 | 4 16 | syl | |- ( ph -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) |
| 18 | rescncf | |- ( ( A [,] B ) C_ CC -> ( ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( x ^ N ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
|
| 19 | 11 17 18 | sylc | |- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 20 | 15 19 | eqeltrrd | |- ( ph -> ( x e. ( A [,] B ) |-> ( x ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 21 | cnicciblnc | |- ( ( A e. RR /\ B e. RR /\ ( x e. ( A [,] B ) |-> ( x ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( x e. ( A [,] B ) |-> ( x ^ N ) ) e. L^1 ) |
|
| 22 | 1 2 20 21 | syl3anc | |- ( ph -> ( x e. ( A [,] B ) |-> ( x ^ N ) ) e. L^1 ) |
| 23 | 14 22 | itgcl | |- ( ph -> S. ( A [,] B ) ( x ^ N ) _d x e. CC ) |
| 24 | 6 | nnne0d | |- ( ph -> ( N + 1 ) =/= 0 ) |
| 25 | 7 14 22 | itgmulc2 | |- ( ph -> ( ( N + 1 ) x. S. ( A [,] B ) ( x ^ N ) _d x ) = S. ( A [,] B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x ) |
| 26 | eqidd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) = ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
|
| 27 | oveq1 | |- ( t = x -> ( t ^ N ) = ( x ^ N ) ) |
|
| 28 | 27 | oveq2d | |- ( t = x -> ( ( N + 1 ) x. ( t ^ N ) ) = ( ( N + 1 ) x. ( x ^ N ) ) ) |
| 29 | 28 | adantl | |- ( ( ( ph /\ x e. ( A (,) B ) ) /\ t = x ) -> ( ( N + 1 ) x. ( t ^ N ) ) = ( ( N + 1 ) x. ( x ^ N ) ) ) |
| 30 | simpr | |- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A (,) B ) ) |
|
| 31 | 7 | adantr | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( N + 1 ) e. CC ) |
| 32 | ioossicc | |- ( A (,) B ) C_ ( A [,] B ) |
|
| 33 | 32 | a1i | |- ( ph -> ( A (,) B ) C_ ( A [,] B ) ) |
| 34 | 33 | sselda | |- ( ( ph /\ x e. ( A (,) B ) ) -> x e. ( A [,] B ) ) |
| 35 | 34 14 | syldan | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( x ^ N ) e. CC ) |
| 36 | 31 35 | mulcld | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( N + 1 ) x. ( x ^ N ) ) e. CC ) |
| 37 | 26 29 30 36 | fvmptd | |- ( ( ph /\ x e. ( A (,) B ) ) -> ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) = ( ( N + 1 ) x. ( x ^ N ) ) ) |
| 38 | 37 | itgeq2dv | |- ( ph -> S. ( A (,) B ) ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) _d x = S. ( A (,) B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x ) |
| 39 | reelprrecn | |- RR e. { RR , CC } |
|
| 40 | 39 | a1i | |- ( ph -> RR e. { RR , CC } ) |
| 41 | 10 | a1i | |- ( ph -> RR C_ CC ) |
| 42 | 41 | sselda | |- ( ( ph /\ t e. RR ) -> t e. CC ) |
| 43 | 1nn0 | |- 1 e. NN0 |
|
| 44 | 43 | a1i | |- ( ph -> 1 e. NN0 ) |
| 45 | 4 44 | nn0addcld | |- ( ph -> ( N + 1 ) e. NN0 ) |
| 46 | 45 | adantr | |- ( ( ph /\ t e. RR ) -> ( N + 1 ) e. NN0 ) |
| 47 | 42 46 | expcld | |- ( ( ph /\ t e. RR ) -> ( t ^ ( N + 1 ) ) e. CC ) |
| 48 | 4 | nn0cnd | |- ( ph -> N e. CC ) |
| 49 | 48 | adantr | |- ( ( ph /\ t e. RR ) -> N e. CC ) |
| 50 | 1cnd | |- ( ( ph /\ t e. RR ) -> 1 e. CC ) |
|
| 51 | 49 50 | addcld | |- ( ( ph /\ t e. RR ) -> ( N + 1 ) e. CC ) |
| 52 | 4 | adantr | |- ( ( ph /\ t e. RR ) -> N e. NN0 ) |
| 53 | 42 52 | expcld | |- ( ( ph /\ t e. RR ) -> ( t ^ N ) e. CC ) |
| 54 | 51 53 | mulcld | |- ( ( ph /\ t e. RR ) -> ( ( N + 1 ) x. ( t ^ N ) ) e. CC ) |
| 55 | simpr | |- ( ( ph /\ t e. CC ) -> t e. CC ) |
|
| 56 | 45 | adantr | |- ( ( ph /\ t e. CC ) -> ( N + 1 ) e. NN0 ) |
| 57 | 55 56 | expcld | |- ( ( ph /\ t e. CC ) -> ( t ^ ( N + 1 ) ) e. CC ) |
| 58 | 57 | fmpttd | |- ( ph -> ( t e. CC |-> ( t ^ ( N + 1 ) ) ) : CC --> CC ) |
| 59 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 60 | 7 | adantr | |- ( ( ph /\ t e. CC ) -> ( N + 1 ) e. CC ) |
| 61 | 4 | adantr | |- ( ( ph /\ t e. CC ) -> N e. NN0 ) |
| 62 | 55 61 | expcld | |- ( ( ph /\ t e. CC ) -> ( t ^ N ) e. CC ) |
| 63 | 60 62 | mulcld | |- ( ( ph /\ t e. CC ) -> ( ( N + 1 ) x. ( t ^ N ) ) e. CC ) |
| 64 | 63 | fmpttd | |- ( ph -> ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) : CC --> CC ) |
| 65 | dvexp | |- ( ( N + 1 ) e. NN -> ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. CC |-> ( ( N + 1 ) x. ( t ^ ( ( N + 1 ) - 1 ) ) ) ) ) |
|
| 66 | 6 65 | syl | |- ( ph -> ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. CC |-> ( ( N + 1 ) x. ( t ^ ( ( N + 1 ) - 1 ) ) ) ) ) |
| 67 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 68 | 48 67 | pncand | |- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
| 69 | 68 | oveq2d | |- ( ph -> ( t ^ ( ( N + 1 ) - 1 ) ) = ( t ^ N ) ) |
| 70 | 69 | oveq2d | |- ( ph -> ( ( N + 1 ) x. ( t ^ ( ( N + 1 ) - 1 ) ) ) = ( ( N + 1 ) x. ( t ^ N ) ) ) |
| 71 | 70 | mpteq2dv | |- ( ph -> ( t e. CC |-> ( ( N + 1 ) x. ( t ^ ( ( N + 1 ) - 1 ) ) ) ) = ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
| 72 | 66 71 | eqtrd | |- ( ph -> ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
| 73 | 72 | feq1d | |- ( ph -> ( ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) : CC --> CC <-> ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) : CC --> CC ) ) |
| 74 | 64 73 | mpbird | |- ( ph -> ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) : CC --> CC ) |
| 75 | 74 | fdmd | |- ( ph -> dom ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) = CC ) |
| 76 | 10 75 | sseqtrrid | |- ( ph -> RR C_ dom ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) ) |
| 77 | dvres3 | |- ( ( ( RR e. { RR , CC } /\ ( t e. CC |-> ( t ^ ( N + 1 ) ) ) : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) ) ) -> ( RR _D ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) ) = ( ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) |` RR ) ) |
|
| 78 | 40 58 59 76 77 | syl22anc | |- ( ph -> ( RR _D ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) ) = ( ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) |` RR ) ) |
| 79 | 72 | reseq1d | |- ( ph -> ( ( CC _D ( t e. CC |-> ( t ^ ( N + 1 ) ) ) ) |` RR ) = ( ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) |` RR ) ) |
| 80 | 78 79 | eqtrd | |- ( ph -> ( RR _D ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) ) = ( ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) |` RR ) ) |
| 81 | resmpt | |- ( RR C_ CC -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) = ( t e. RR |-> ( t ^ ( N + 1 ) ) ) ) |
|
| 82 | 10 81 | mp1i | |- ( ph -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) = ( t e. RR |-> ( t ^ ( N + 1 ) ) ) ) |
| 83 | 82 | oveq2d | |- ( ph -> ( RR _D ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` RR ) ) = ( RR _D ( t e. RR |-> ( t ^ ( N + 1 ) ) ) ) ) |
| 84 | resmpt | |- ( RR C_ CC -> ( ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) |` RR ) = ( t e. RR |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
|
| 85 | 10 84 | mp1i | |- ( ph -> ( ( t e. CC |-> ( ( N + 1 ) x. ( t ^ N ) ) ) |` RR ) = ( t e. RR |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
| 86 | 80 83 85 | 3eqtr3d | |- ( ph -> ( RR _D ( t e. RR |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. RR |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
| 87 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 88 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 89 | iccntr | |- ( ( A e. RR /\ B e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
|
| 90 | 1 2 89 | syl2anc | |- ( ph -> ( ( int ` ( topGen ` ran (,) ) ) ` ( A [,] B ) ) = ( A (,) B ) ) |
| 91 | 40 47 54 86 9 87 88 90 | dvmptres2 | |- ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) = ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ) |
| 92 | ioossre | |- ( A (,) B ) C_ RR |
|
| 93 | 92 10 | sstri | |- ( A (,) B ) C_ CC |
| 94 | 93 | a1i | |- ( ph -> ( A (,) B ) C_ CC ) |
| 95 | cncfmptc | |- ( ( ( N + 1 ) e. CC /\ ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( t e. ( A (,) B ) |-> ( N + 1 ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
|
| 96 | 7 94 59 95 | syl3anc | |- ( ph -> ( t e. ( A (,) B ) |-> ( N + 1 ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 97 | resmpt | |- ( ( A (,) B ) C_ CC -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A (,) B ) ) = ( t e. ( A (,) B ) |-> ( t ^ N ) ) ) |
|
| 98 | 93 97 | mp1i | |- ( ph -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A (,) B ) ) = ( t e. ( A (,) B ) |-> ( t ^ N ) ) ) |
| 99 | expcncf | |- ( N e. NN0 -> ( t e. CC |-> ( t ^ N ) ) e. ( CC -cn-> CC ) ) |
|
| 100 | 4 99 | syl | |- ( ph -> ( t e. CC |-> ( t ^ N ) ) e. ( CC -cn-> CC ) ) |
| 101 | rescncf | |- ( ( A (,) B ) C_ CC -> ( ( t e. CC |-> ( t ^ N ) ) e. ( CC -cn-> CC ) -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) ) |
|
| 102 | 94 100 101 | sylc | |- ( ph -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 103 | 98 102 | eqeltrrd | |- ( ph -> ( t e. ( A (,) B ) |-> ( t ^ N ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 104 | 96 103 | mulcncf | |- ( ph -> ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 105 | 91 104 | eqeltrd | |- ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
| 106 | ioombl | |- ( A (,) B ) e. dom vol |
|
| 107 | 106 | a1i | |- ( ph -> ( A (,) B ) e. dom vol ) |
| 108 | 48 | adantr | |- ( ( ph /\ t e. ( A [,] B ) ) -> N e. CC ) |
| 109 | 1cnd | |- ( ( ph /\ t e. ( A [,] B ) ) -> 1 e. CC ) |
|
| 110 | 108 109 | addcld | |- ( ( ph /\ t e. ( A [,] B ) ) -> ( N + 1 ) e. CC ) |
| 111 | 11 | sselda | |- ( ( ph /\ t e. ( A [,] B ) ) -> t e. CC ) |
| 112 | 4 | adantr | |- ( ( ph /\ t e. ( A [,] B ) ) -> N e. NN0 ) |
| 113 | 111 112 | expcld | |- ( ( ph /\ t e. ( A [,] B ) ) -> ( t ^ N ) e. CC ) |
| 114 | 110 113 | mulcld | |- ( ( ph /\ t e. ( A [,] B ) ) -> ( ( N + 1 ) x. ( t ^ N ) ) e. CC ) |
| 115 | cncfmptc | |- ( ( ( N + 1 ) e. CC /\ ( A [,] B ) C_ CC /\ CC C_ CC ) -> ( t e. ( A [,] B ) |-> ( N + 1 ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
|
| 116 | 7 11 59 115 | syl3anc | |- ( ph -> ( t e. ( A [,] B ) |-> ( N + 1 ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 117 | 11 | resmptd | |- ( ph -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A [,] B ) ) = ( t e. ( A [,] B ) |-> ( t ^ N ) ) ) |
| 118 | rescncf | |- ( ( A [,] B ) C_ CC -> ( ( t e. CC |-> ( t ^ N ) ) e. ( CC -cn-> CC ) -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
|
| 119 | 11 100 118 | sylc | |- ( ph -> ( ( t e. CC |-> ( t ^ N ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 120 | 117 119 | eqeltrrd | |- ( ph -> ( t e. ( A [,] B ) |-> ( t ^ N ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 121 | 116 120 | mulcncf | |- ( ph -> ( t e. ( A [,] B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 122 | cnicciblnc | |- ( ( A e. RR /\ B e. RR /\ ( t e. ( A [,] B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) -> ( t e. ( A [,] B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. L^1 ) |
|
| 123 | 1 2 121 122 | syl3anc | |- ( ph -> ( t e. ( A [,] B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. L^1 ) |
| 124 | 33 107 114 123 | iblss | |- ( ph -> ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) e. L^1 ) |
| 125 | 91 124 | eqeltrd | |- ( ph -> ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) e. L^1 ) |
| 126 | 11 | resmptd | |- ( ph -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` ( A [,] B ) ) = ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) |
| 127 | expcncf | |- ( ( N + 1 ) e. NN0 -> ( t e. CC |-> ( t ^ ( N + 1 ) ) ) e. ( CC -cn-> CC ) ) |
|
| 128 | 45 127 | syl | |- ( ph -> ( t e. CC |-> ( t ^ ( N + 1 ) ) ) e. ( CC -cn-> CC ) ) |
| 129 | rescncf | |- ( ( A [,] B ) C_ CC -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) e. ( CC -cn-> CC ) -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) ) |
|
| 130 | 11 128 129 | sylc | |- ( ph -> ( ( t e. CC |-> ( t ^ ( N + 1 ) ) ) |` ( A [,] B ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 131 | 126 130 | eqeltrrd | |- ( ph -> ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) e. ( ( A [,] B ) -cn-> CC ) ) |
| 132 | 1 2 3 105 125 131 | ftc2 | |- ( ph -> S. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) _d x = ( ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` B ) - ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` A ) ) ) |
| 133 | 91 | fveq1d | |- ( ph -> ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) = ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) ) |
| 134 | 133 | ralrimivw | |- ( ph -> A. x e. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) = ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) ) |
| 135 | itgeq2 | |- ( A. x e. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) = ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) -> S. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) _d x = S. ( A (,) B ) ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) _d x ) |
|
| 136 | 134 135 | syl | |- ( ph -> S. ( A (,) B ) ( ( RR _D ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) ` x ) _d x = S. ( A (,) B ) ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) _d x ) |
| 137 | eqidd | |- ( ph -> ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) = ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ) |
|
| 138 | simpr | |- ( ( ph /\ t = B ) -> t = B ) |
|
| 139 | 138 | oveq1d | |- ( ( ph /\ t = B ) -> ( t ^ ( N + 1 ) ) = ( B ^ ( N + 1 ) ) ) |
| 140 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 141 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 142 | ubicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> B e. ( A [,] B ) ) |
|
| 143 | 140 141 3 142 | syl3anc | |- ( ph -> B e. ( A [,] B ) ) |
| 144 | 2 | recnd | |- ( ph -> B e. CC ) |
| 145 | 144 45 | expcld | |- ( ph -> ( B ^ ( N + 1 ) ) e. CC ) |
| 146 | 137 139 143 145 | fvmptd | |- ( ph -> ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` B ) = ( B ^ ( N + 1 ) ) ) |
| 147 | simpr | |- ( ( ph /\ t = A ) -> t = A ) |
|
| 148 | 147 | oveq1d | |- ( ( ph /\ t = A ) -> ( t ^ ( N + 1 ) ) = ( A ^ ( N + 1 ) ) ) |
| 149 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 150 | 140 141 3 149 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 151 | 1 | recnd | |- ( ph -> A e. CC ) |
| 152 | 151 45 | expcld | |- ( ph -> ( A ^ ( N + 1 ) ) e. CC ) |
| 153 | 137 148 150 152 | fvmptd | |- ( ph -> ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` A ) = ( A ^ ( N + 1 ) ) ) |
| 154 | 146 153 | oveq12d | |- ( ph -> ( ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` B ) - ( ( t e. ( A [,] B ) |-> ( t ^ ( N + 1 ) ) ) ` A ) ) = ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) ) |
| 155 | 132 136 154 | 3eqtr3d | |- ( ph -> S. ( A (,) B ) ( ( t e. ( A (,) B ) |-> ( ( N + 1 ) x. ( t ^ N ) ) ) ` x ) _d x = ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) ) |
| 156 | 7 | adantr | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( N + 1 ) e. CC ) |
| 157 | 156 14 | mulcld | |- ( ( ph /\ x e. ( A [,] B ) ) -> ( ( N + 1 ) x. ( x ^ N ) ) e. CC ) |
| 158 | 1 2 157 | itgioo | |- ( ph -> S. ( A (,) B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x = S. ( A [,] B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x ) |
| 159 | 38 155 158 | 3eqtr3rd | |- ( ph -> S. ( A [,] B ) ( ( N + 1 ) x. ( x ^ N ) ) _d x = ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) ) |
| 160 | 25 159 | eqtrd | |- ( ph -> ( ( N + 1 ) x. S. ( A [,] B ) ( x ^ N ) _d x ) = ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) ) |
| 161 | 7 23 24 160 | mvllmuld | |- ( ph -> S. ( A [,] B ) ( x ^ N ) _d x = ( ( ( B ^ ( N + 1 ) ) - ( A ^ ( N + 1 ) ) ) / ( N + 1 ) ) ) |