This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The power function on complex numbers, for fixed exponent N, is continuous. Similar to expcn . (Contributed by Glauco Siliprandi, 29-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expcncf | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 2 | 1 | expcn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 3 | 1 | cncfcn1 | ⊢ ( ℂ –cn→ ℂ ) = ( ( TopOpen ‘ ℂfld ) Cn ( TopOpen ‘ ℂfld ) ) |
| 4 | 2 3 | eleqtrrdi | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ∈ ( ℂ –cn→ ℂ ) ) |