This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a complex differentiable function to the reals. (Contributed by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvres3 | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldv | ⊢ Rel ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) | |
| 2 | recnprss | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → 𝑆 ⊆ ℂ ) | |
| 3 | 2 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → 𝑆 ⊆ ℂ ) |
| 4 | simplr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 5 | simprr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) | |
| 6 | ssidd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ℂ ⊆ ℂ ) | |
| 7 | simprl | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → 𝐴 ⊆ ℂ ) | |
| 8 | 6 4 7 | dvbss | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → dom ( ℂ D 𝐹 ) ⊆ 𝐴 ) |
| 9 | 5 8 | sstrd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → 𝑆 ⊆ 𝐴 ) |
| 10 | 4 9 | fssresd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( 𝐹 ↾ 𝑆 ) : 𝑆 ⟶ ℂ ) |
| 11 | ssidd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → 𝑆 ⊆ 𝑆 ) | |
| 12 | 3 10 11 | dvbss | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⊆ 𝑆 ) |
| 13 | ssdmres | ⊢ ( 𝑆 ⊆ dom ( ℂ D 𝐹 ) ↔ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) = 𝑆 ) | |
| 14 | 5 13 | sylib | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) = 𝑆 ) |
| 15 | 12 14 | sseqtrrd | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⊆ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) |
| 16 | relssres | ⊢ ( ( Rel ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ∧ dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⊆ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) → ( ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ↾ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) | |
| 17 | 1 15 16 | sylancr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ↾ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) = ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) |
| 18 | dvfg | ⊢ ( 𝑆 ∈ { ℝ , ℂ } → ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) : dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⟶ ℂ ) | |
| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) : dom ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ⟶ ℂ ) |
| 20 | 19 | ffund | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → Fun ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) |
| 21 | dvres2 | ⊢ ( ( ( ℂ ⊆ ℂ ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ ℂ ) ) → ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ⊆ ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) | |
| 22 | 6 4 7 3 21 | syl22anc | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ⊆ ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) |
| 23 | funssres | ⊢ ( ( Fun ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ∧ ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ⊆ ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ) → ( ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ↾ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) | |
| 24 | 20 22 23 | syl2anc | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) ↾ dom ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) |
| 25 | 17 24 | eqtr3d | ⊢ ( ( ( 𝑆 ∈ { ℝ , ℂ } ∧ 𝐹 : 𝐴 ⟶ ℂ ) ∧ ( 𝐴 ⊆ ℂ ∧ 𝑆 ⊆ dom ( ℂ D 𝐹 ) ) ) → ( 𝑆 D ( 𝐹 ↾ 𝑆 ) ) = ( ( ℂ D 𝐹 ) ↾ 𝑆 ) ) |