This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of integrals on open and closed intervals. (Contributed by Mario Carneiro, 2-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgioo.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| itgioo.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| itgioo.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℂ ) | ||
| Assertion | itgioo | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) 𝐶 d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgioo.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | itgioo.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | itgioo.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) → 𝐶 ∈ ℂ ) | |
| 4 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 5 | 4 | a1i | ⊢ ( 𝜑 → ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ) |
| 6 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 7 | 1 2 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 8 | 1 | rexrd | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 9 | 2 | rexrd | ⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 10 | icc0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) | |
| 11 | 8 9 10 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) = ∅ ↔ 𝐵 < 𝐴 ) ) |
| 12 | 11 | biimpar | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ( 𝐴 [,] 𝐵 ) = ∅ ) |
| 13 | 12 | difeq1d | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) = ( ∅ ∖ ( 𝐴 (,) 𝐵 ) ) ) |
| 14 | 0dif | ⊢ ( ∅ ∖ ( 𝐴 (,) 𝐵 ) ) = ∅ | |
| 15 | 0ss | ⊢ ∅ ⊆ { 𝐴 , 𝐵 } | |
| 16 | 14 15 | eqsstri | ⊢ ( ∅ ∖ ( 𝐴 (,) 𝐵 ) ) ⊆ { 𝐴 , 𝐵 } |
| 17 | 13 16 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝐵 < 𝐴 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ⊆ { 𝐴 , 𝐵 } ) |
| 18 | uncom | ⊢ ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) | |
| 19 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ* ) |
| 20 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ* ) |
| 21 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 22 | prunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) | |
| 23 | 19 20 21 22 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 24 | 18 23 | eqtr2id | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) = ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ) |
| 25 | 24 | difeq1d | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) = ( ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ∖ ( 𝐴 (,) 𝐵 ) ) ) |
| 26 | difun2 | ⊢ ( ( { 𝐴 , 𝐵 } ∪ ( 𝐴 (,) 𝐵 ) ) ∖ ( 𝐴 (,) 𝐵 ) ) = ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) | |
| 27 | 25 26 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) = ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) ) |
| 28 | difss | ⊢ ( { 𝐴 , 𝐵 } ∖ ( 𝐴 (,) 𝐵 ) ) ⊆ { 𝐴 , 𝐵 } | |
| 29 | 27 28 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ⊆ { 𝐴 , 𝐵 } ) |
| 30 | 17 29 2 1 | ltlecasei | ⊢ ( 𝜑 → ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ⊆ { 𝐴 , 𝐵 } ) |
| 31 | 1 2 | prssd | ⊢ ( 𝜑 → { 𝐴 , 𝐵 } ⊆ ℝ ) |
| 32 | prfi | ⊢ { 𝐴 , 𝐵 } ∈ Fin | |
| 33 | ovolfi | ⊢ ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ { 𝐴 , 𝐵 } ⊆ ℝ ) → ( vol* ‘ { 𝐴 , 𝐵 } ) = 0 ) | |
| 34 | 32 31 33 | sylancr | ⊢ ( 𝜑 → ( vol* ‘ { 𝐴 , 𝐵 } ) = 0 ) |
| 35 | ovolssnul | ⊢ ( ( ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ⊆ { 𝐴 , 𝐵 } ∧ { 𝐴 , 𝐵 } ⊆ ℝ ∧ ( vol* ‘ { 𝐴 , 𝐵 } ) = 0 ) → ( vol* ‘ ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ) = 0 ) | |
| 36 | 30 31 34 35 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( ( 𝐴 [,] 𝐵 ) ∖ ( 𝐴 (,) 𝐵 ) ) ) = 0 ) |
| 37 | 5 7 36 3 | itgss3 | ⊢ ( 𝜑 → ( ( ( 𝑥 ∈ ( 𝐴 (,) 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 ↔ ( 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ↦ 𝐶 ) ∈ 𝐿1 ) ∧ ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) 𝐶 d 𝑥 ) ) |
| 38 | 37 | simprd | ⊢ ( 𝜑 → ∫ ( 𝐴 (,) 𝐵 ) 𝐶 d 𝑥 = ∫ ( 𝐴 [,] 𝐵 ) 𝐶 d 𝑥 ) |