This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Choice-free proof of cniccibl . (Contributed by Brendan Leahy, 2-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnicciblnc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐹 ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccmbl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ dom vol ) | |
| 2 | cnmbf | ⊢ ( ( ( 𝐴 [,] 𝐵 ) ∈ dom vol ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐹 ∈ MblFn ) | |
| 3 | 1 2 | stoic3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐹 ∈ MblFn ) |
| 4 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) | |
| 5 | cncff | ⊢ ( 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) → 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ ) | |
| 6 | fdm | ⊢ ( 𝐹 : ( 𝐴 [,] 𝐵 ) ⟶ ℂ → dom 𝐹 = ( 𝐴 [,] 𝐵 ) ) | |
| 7 | 4 5 6 | 3syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → dom 𝐹 = ( 𝐴 [,] 𝐵 ) ) |
| 8 | 7 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( vol ‘ dom 𝐹 ) = ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 9 | iccvolcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ ) | |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ ) |
| 11 | 8 10 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( vol ‘ dom 𝐹 ) ∈ ℝ ) |
| 12 | cniccbdd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) | |
| 13 | 7 | raleqdv | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
| 14 | 13 | rexbidv | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( 𝐴 [,] 𝐵 ) ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) ) |
| 15 | 12 14 | mpbird | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) |
| 16 | bddiblnc | ⊢ ( ( 𝐹 ∈ MblFn ∧ ( vol ‘ dom 𝐹 ) ∈ ℝ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ dom 𝐹 ( abs ‘ ( 𝐹 ‘ 𝑦 ) ) ≤ 𝑥 ) → 𝐹 ∈ 𝐿1 ) | |
| 17 | 3 11 15 16 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐹 ∈ ( ( 𝐴 [,] 𝐵 ) –cn→ ℂ ) ) → 𝐹 ∈ 𝐿1 ) |