This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvexp | ⊢ ( 𝑁 ∈ ℕ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑛 = 1 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 1 ) ) | |
| 2 | 1 | mpteq2dv | ⊢ ( 𝑛 = 1 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) |
| 3 | 2 | oveq2d | ⊢ ( 𝑛 = 1 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) ) |
| 4 | id | ⊢ ( 𝑛 = 1 → 𝑛 = 1 ) | |
| 5 | oveq1 | ⊢ ( 𝑛 = 1 → ( 𝑛 − 1 ) = ( 1 − 1 ) ) | |
| 6 | 5 | oveq2d | ⊢ ( 𝑛 = 1 → ( 𝑥 ↑ ( 𝑛 − 1 ) ) = ( 𝑥 ↑ ( 1 − 1 ) ) ) |
| 7 | 4 6 | oveq12d | ⊢ ( 𝑛 = 1 → ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) = ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) |
| 8 | 7 | mpteq2dv | ⊢ ( 𝑛 = 1 → ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) ) |
| 9 | 3 8 | eqeq12d | ⊢ ( 𝑛 = 1 → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) ↔ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑘 ) ) | |
| 11 | 10 | mpteq2dv | ⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
| 12 | 11 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 13 | id | ⊢ ( 𝑛 = 𝑘 → 𝑛 = 𝑘 ) | |
| 14 | oveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 − 1 ) = ( 𝑘 − 1 ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 𝑥 ↑ ( 𝑛 − 1 ) ) = ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) |
| 16 | 13 15 | oveq12d | ⊢ ( 𝑛 = 𝑘 → ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) = ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) |
| 17 | 16 | mpteq2dv | ⊢ ( 𝑛 = 𝑘 → ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 18 | 12 17 | eqeq12d | ⊢ ( 𝑛 = 𝑘 → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) ↔ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) ) |
| 19 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) | |
| 20 | 19 | mpteq2dv | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 22 | id | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → 𝑛 = ( 𝑘 + 1 ) ) | |
| 23 | oveq1 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) | |
| 24 | 23 | oveq2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ↑ ( 𝑛 − 1 ) ) = ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) |
| 25 | 22 24 | oveq12d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) |
| 26 | 25 | mpteq2dv | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
| 27 | 21 26 | eqeq12d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) ↔ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) ) |
| 28 | oveq2 | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 ↑ 𝑛 ) = ( 𝑥 ↑ 𝑁 ) ) | |
| 29 | 28 | mpteq2dv | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) |
| 30 | 29 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) ) |
| 31 | id | ⊢ ( 𝑛 = 𝑁 → 𝑛 = 𝑁 ) | |
| 32 | oveq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 − 1 ) = ( 𝑁 − 1 ) ) | |
| 33 | 32 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 ↑ ( 𝑛 − 1 ) ) = ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) |
| 34 | 31 33 | oveq12d | ⊢ ( 𝑛 = 𝑁 → ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) = ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) |
| 35 | 34 | mpteq2dv | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) |
| 36 | 30 35 | eqeq12d | ⊢ ( 𝑛 = 𝑁 → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑛 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑛 · ( 𝑥 ↑ ( 𝑛 − 1 ) ) ) ) ↔ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) ) |
| 37 | exp1 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 1 ) = 𝑥 ) | |
| 38 | 37 | mpteq2ia | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) |
| 39 | mptresid | ⊢ ( I ↾ ℂ ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) | |
| 40 | 38 39 | eqtr4i | ⊢ ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) = ( I ↾ ℂ ) |
| 41 | 40 | oveq2i | ⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) = ( ℂ D ( I ↾ ℂ ) ) |
| 42 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 43 | 42 | oveq2i | ⊢ ( 𝑥 ↑ ( 1 − 1 ) ) = ( 𝑥 ↑ 0 ) |
| 44 | exp0 | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ 0 ) = 1 ) | |
| 45 | 43 44 | eqtrid | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 ↑ ( 1 − 1 ) ) = 1 ) |
| 46 | 45 | oveq2d | ⊢ ( 𝑥 ∈ ℂ → ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) = ( 1 · 1 ) ) |
| 47 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 48 | 46 47 | eqtrdi | ⊢ ( 𝑥 ∈ ℂ → ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) = 1 ) |
| 49 | 48 | mpteq2ia | ⊢ ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
| 50 | fconstmpt | ⊢ ( ℂ × { 1 } ) = ( 𝑥 ∈ ℂ ↦ 1 ) | |
| 51 | 49 50 | eqtr4i | ⊢ ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) = ( ℂ × { 1 } ) |
| 52 | dvid | ⊢ ( ℂ D ( I ↾ ℂ ) ) = ( ℂ × { 1 } ) | |
| 53 | 51 52 | eqtr4i | ⊢ ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) = ( ℂ D ( I ↾ ℂ ) ) |
| 54 | 41 53 | eqtr4i | ⊢ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 1 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ ( 1 − 1 ) ) ) ) |
| 55 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 56 | 55 | adantr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → 𝑘 ∈ ℂ ) |
| 57 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 58 | pncan | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) | |
| 59 | 56 57 58 | sylancl | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 60 | 59 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) = ( 𝑥 ↑ 𝑘 ) ) |
| 61 | 60 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( 𝑘 + 1 ) · ( 𝑥 ↑ 𝑘 ) ) ) |
| 62 | 57 | a1i | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → 1 ∈ ℂ ) |
| 63 | id | ⊢ ( 𝑥 ∈ ℂ → 𝑥 ∈ ℂ ) | |
| 64 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 65 | expcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ↑ 𝑘 ) ∈ ℂ ) | |
| 66 | 63 64 65 | syl2anr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ 𝑘 ) ∈ ℂ ) |
| 67 | 56 62 66 | adddird | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝑥 ↑ 𝑘 ) ) = ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 1 · ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 68 | 66 | mullidd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 1 · ( 𝑥 ↑ 𝑘 ) ) = ( 𝑥 ↑ 𝑘 ) ) |
| 69 | 68 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 1 · ( 𝑥 ↑ 𝑘 ) ) ) = ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 𝑥 ↑ 𝑘 ) ) ) |
| 70 | 61 67 69 | 3eqtrd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) = ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 𝑥 ↑ 𝑘 ) ) ) |
| 71 | 70 | mpteq2dva | ⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 72 | cnex | ⊢ ℂ ∈ V | |
| 73 | 72 | a1i | ⊢ ( 𝑘 ∈ ℕ → ℂ ∈ V ) |
| 74 | 56 66 | mulcld | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) ∈ ℂ ) |
| 75 | nnm1nn0 | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 − 1 ) ∈ ℕ0 ) | |
| 76 | expcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑘 − 1 ) ∈ ℕ0 ) → ( 𝑥 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) | |
| 77 | 63 75 76 | syl2anr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ ( 𝑘 − 1 ) ) ∈ ℂ ) |
| 78 | 56 77 | mulcld | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ∈ ℂ ) |
| 79 | simpr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → 𝑥 ∈ ℂ ) | |
| 80 | eqidd | ⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) | |
| 81 | 39 | a1i | ⊢ ( 𝑘 ∈ ℕ → ( I ↾ ℂ ) = ( 𝑥 ∈ ℂ ↦ 𝑥 ) ) |
| 82 | 73 78 79 80 81 | offval2 | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) · 𝑥 ) ) ) |
| 83 | 56 77 79 | mulassd | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) · 𝑥 ) = ( 𝑘 · ( ( 𝑥 ↑ ( 𝑘 − 1 ) ) · 𝑥 ) ) ) |
| 84 | expm1t | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( 𝑥 ↑ 𝑘 ) = ( ( 𝑥 ↑ ( 𝑘 − 1 ) ) · 𝑥 ) ) | |
| 85 | 84 | ancoms | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ 𝑘 ) = ( ( 𝑥 ↑ ( 𝑘 − 1 ) ) · 𝑥 ) ) |
| 86 | 85 | oveq2d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) = ( 𝑘 · ( ( 𝑥 ↑ ( 𝑘 − 1 ) ) · 𝑥 ) ) ) |
| 87 | 83 86 | eqtr4d | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) · 𝑥 ) = ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) ) |
| 88 | 87 | mpteq2dva | ⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) · 𝑥 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 89 | 82 88 | eqtrd | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 90 | 52 50 | eqtri | ⊢ ( ℂ D ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) |
| 91 | 90 | a1i | ⊢ ( 𝑘 ∈ ℕ → ( ℂ D ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ 1 ) ) |
| 92 | eqidd | ⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) | |
| 93 | 73 62 66 91 92 | offval2 | ⊢ ( 𝑘 ∈ ℕ → ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 94 | 68 | mpteq2dva | ⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 1 · ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
| 95 | 93 94 | eqtrd | ⊢ ( 𝑘 ∈ ℕ → ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) |
| 96 | 73 74 66 89 95 | offval2 | ⊢ ( 𝑘 ∈ ℕ → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 · ( 𝑥 ↑ 𝑘 ) ) + ( 𝑥 ↑ 𝑘 ) ) ) ) |
| 97 | 71 96 | eqtr4d | ⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
| 98 | oveq1 | ⊢ ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) = ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ) | |
| 99 | 98 | oveq1d | ⊢ ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) → ( ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) = ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
| 100 | 99 | eqcomd | ⊢ ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) → ( ( ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) = ( ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
| 101 | 97 100 | sylan9eq | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) = ( ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
| 102 | cnelprrecn | ⊢ ℂ ∈ { ℝ , ℂ } | |
| 103 | 102 | a1i | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ℂ ∈ { ℝ , ℂ } ) |
| 104 | 66 | fmpttd | ⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) |
| 105 | 104 | adantr | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) : ℂ ⟶ ℂ ) |
| 106 | f1oi | ⊢ ( I ↾ ℂ ) : ℂ –1-1-onto→ ℂ | |
| 107 | f1of | ⊢ ( ( I ↾ ℂ ) : ℂ –1-1-onto→ ℂ → ( I ↾ ℂ ) : ℂ ⟶ ℂ ) | |
| 108 | 106 107 | mp1i | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( I ↾ ℂ ) : ℂ ⟶ ℂ ) |
| 109 | simpr | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) | |
| 110 | 109 | dmeqd | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = dom ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) |
| 111 | 78 | fmpttd | ⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) : ℂ ⟶ ℂ ) |
| 112 | 111 | adantr | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) : ℂ ⟶ ℂ ) |
| 113 | 112 | fdmd | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → dom ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) = ℂ ) |
| 114 | 110 113 | eqtrd | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → dom ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ℂ ) |
| 115 | 1ex | ⊢ 1 ∈ V | |
| 116 | 115 | fconst | ⊢ ( ℂ × { 1 } ) : ℂ ⟶ { 1 } |
| 117 | 52 | feq1i | ⊢ ( ( ℂ D ( I ↾ ℂ ) ) : ℂ ⟶ { 1 } ↔ ( ℂ × { 1 } ) : ℂ ⟶ { 1 } ) |
| 118 | 116 117 | mpbir | ⊢ ( ℂ D ( I ↾ ℂ ) ) : ℂ ⟶ { 1 } |
| 119 | 118 | fdmi | ⊢ dom ( ℂ D ( I ↾ ℂ ) ) = ℂ |
| 120 | 119 | a1i | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → dom ( ℂ D ( I ↾ ℂ ) ) = ℂ ) |
| 121 | 103 105 108 114 120 | dvmulf | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( ℂ D ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) ) = ( ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ∘f · ( I ↾ ℂ ) ) ∘f + ( ( ℂ D ( I ↾ ℂ ) ) ∘f · ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) ) ) |
| 122 | 73 66 79 92 81 | offval2 | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑥 ↑ 𝑘 ) · 𝑥 ) ) ) |
| 123 | expp1 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑥 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑥 ↑ 𝑘 ) · 𝑥 ) ) | |
| 124 | 63 64 123 | syl2anr | ⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ↑ ( 𝑘 + 1 ) ) = ( ( 𝑥 ↑ 𝑘 ) · 𝑥 ) ) |
| 125 | 124 | mpteq2dva | ⊢ ( 𝑘 ∈ ℕ → ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑥 ↑ 𝑘 ) · 𝑥 ) ) ) |
| 126 | 122 125 | eqtr4d | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) |
| 127 | 126 | oveq2d | ⊢ ( 𝑘 ∈ ℕ → ( ℂ D ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 128 | 127 | adantr | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( ℂ D ( ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ∘f · ( I ↾ ℂ ) ) ) = ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 129 | 101 121 128 | 3eqtr2rd | ⊢ ( ( 𝑘 ∈ ℕ ∧ ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) |
| 130 | 129 | ex | ⊢ ( 𝑘 ∈ ℕ → ( ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑘 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑘 · ( 𝑥 ↑ ( 𝑘 − 1 ) ) ) ) → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ ( 𝑘 + 1 ) ) ) ) = ( 𝑥 ∈ ℂ ↦ ( ( 𝑘 + 1 ) · ( 𝑥 ↑ ( ( 𝑘 + 1 ) − 1 ) ) ) ) ) ) |
| 131 | 9 18 27 36 54 130 | nnind | ⊢ ( 𝑁 ∈ ℕ → ( ℂ D ( 𝑥 ∈ ℂ ↦ ( 𝑥 ↑ 𝑁 ) ) ) = ( 𝑥 ∈ ℂ ↦ ( 𝑁 · ( 𝑥 ↑ ( 𝑁 − 1 ) ) ) ) ) |