This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg2add . (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2add.f1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| itg2add.f2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| itg2add.f3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | ||
| itg2add.g1 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | ||
| itg2add.g2 | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| itg2add.g3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) | ||
| itg2add.p1 | ⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) | ||
| itg2add.p2 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) | ||
| itg2add.p3 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) | ||
| itg2add.q1 | ⊢ ( 𝜑 → 𝑄 : ℕ ⟶ dom ∫1 ) | ||
| itg2add.q2 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑛 ) ∧ ( 𝑄 ‘ 𝑛 ) ∘r ≤ ( 𝑄 ‘ ( 𝑛 + 1 ) ) ) ) | ||
| itg2add.q3 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) | ||
| Assertion | itg2addlem | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2add.f1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | itg2add.f2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 3 | itg2add.f3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | |
| 4 | itg2add.g1 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | |
| 5 | itg2add.g2 | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 6 | itg2add.g3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) | |
| 7 | itg2add.p1 | ⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) | |
| 8 | itg2add.p2 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 9 | itg2add.p3 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) | |
| 10 | itg2add.q1 | ⊢ ( 𝜑 → 𝑄 : ℕ ⟶ dom ∫1 ) | |
| 11 | itg2add.q2 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑛 ) ∧ ( 𝑄 ‘ 𝑛 ) ∘r ≤ ( 𝑄 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 12 | itg2add.q3 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) | |
| 13 | 1 4 | mbfadd | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ MblFn ) |
| 14 | ge0addcl | ⊢ ( ( 𝑦 ∈ ( 0 [,) +∞ ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) → ( 𝑦 + 𝑧 ) ∈ ( 0 [,) +∞ ) ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ( 0 [,) +∞ ) ∧ 𝑧 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑦 + 𝑧 ) ∈ ( 0 [,) +∞ ) ) |
| 16 | reex | ⊢ ℝ ∈ V | |
| 17 | 16 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 18 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 19 | 15 2 5 17 17 18 | off | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 20 | simpl | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 𝑓 ∈ dom ∫1 ) | |
| 21 | simpr | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → 𝑔 ∈ dom ∫1 ) | |
| 22 | 20 21 | i1fadd | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) → ( 𝑓 ∘f + 𝑔 ) ∈ dom ∫1 ) |
| 23 | 22 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1 ) ) → ( 𝑓 ∘f + 𝑔 ) ∈ dom ∫1 ) |
| 24 | nnex | ⊢ ℕ ∈ V | |
| 25 | 24 | a1i | ⊢ ( 𝜑 → ℕ ∈ V ) |
| 26 | inidm | ⊢ ( ℕ ∩ ℕ ) = ℕ | |
| 27 | 23 7 10 25 25 26 | off | ⊢ ( 𝜑 → ( 𝑃 ∘f ∘f + 𝑄 ) : ℕ ⟶ dom ∫1 ) |
| 28 | ge0addcl | ⊢ ( ( 𝑓 ∈ ( 0 [,) +∞ ) ∧ 𝑔 ∈ ( 0 [,) +∞ ) ) → ( 𝑓 + 𝑔 ) ∈ ( 0 [,) +∞ ) ) | |
| 29 | 28 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ ( 𝑓 ∈ ( 0 [,) +∞ ) ∧ 𝑔 ∈ ( 0 [,) +∞ ) ) ) → ( 𝑓 + 𝑔 ) ∈ ( 0 [,) +∞ ) ) |
| 30 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 ) |
| 31 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑚 ) ) | |
| 32 | 31 | breq2d | ⊢ ( 𝑛 = 𝑚 → ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ↔ 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ) ) |
| 33 | fvoveq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑃 ‘ ( 𝑛 + 1 ) ) = ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) | |
| 34 | 31 33 | breq12d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) ) |
| 35 | 32 34 | anbi12d | ⊢ ( 𝑛 = 𝑚 → ( ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ↔ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ∧ ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 36 | 35 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ∧ ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) ) |
| 37 | 8 36 | sylan | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ∧ ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) ) |
| 38 | 37 | simpld | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ) |
| 39 | breq2 | ⊢ ( 𝑓 = ( 𝑃 ‘ 𝑚 ) → ( 0𝑝 ∘r ≤ 𝑓 ↔ 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) ) ) | |
| 40 | feq1 | ⊢ ( 𝑓 = ( 𝑃 ‘ 𝑚 ) → ( 𝑓 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) | |
| 41 | 39 40 | imbi12d | ⊢ ( 𝑓 = ( 𝑃 ‘ 𝑚 ) → ( ( 0𝑝 ∘r ≤ 𝑓 → 𝑓 : ℝ ⟶ ( 0 [,) +∞ ) ) ↔ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) → ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) ) |
| 42 | i1ff | ⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 : ℝ ⟶ ℝ ) | |
| 43 | 42 | ffnd | ⊢ ( 𝑓 ∈ dom ∫1 → 𝑓 Fn ℝ ) |
| 44 | 43 | adantr | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝑓 ) → 𝑓 Fn ℝ ) |
| 45 | 0cn | ⊢ 0 ∈ ℂ | |
| 46 | fnconstg | ⊢ ( 0 ∈ ℂ → ( ℂ × { 0 } ) Fn ℂ ) | |
| 47 | 45 46 | ax-mp | ⊢ ( ℂ × { 0 } ) Fn ℂ |
| 48 | df-0p | ⊢ 0𝑝 = ( ℂ × { 0 } ) | |
| 49 | 48 | fneq1i | ⊢ ( 0𝑝 Fn ℂ ↔ ( ℂ × { 0 } ) Fn ℂ ) |
| 50 | 47 49 | mpbir | ⊢ 0𝑝 Fn ℂ |
| 51 | 50 | a1i | ⊢ ( 𝑓 ∈ dom ∫1 → 0𝑝 Fn ℂ ) |
| 52 | cnex | ⊢ ℂ ∈ V | |
| 53 | 52 | a1i | ⊢ ( 𝑓 ∈ dom ∫1 → ℂ ∈ V ) |
| 54 | 16 | a1i | ⊢ ( 𝑓 ∈ dom ∫1 → ℝ ∈ V ) |
| 55 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 56 | sseqin2 | ⊢ ( ℝ ⊆ ℂ ↔ ( ℂ ∩ ℝ ) = ℝ ) | |
| 57 | 55 56 | mpbi | ⊢ ( ℂ ∩ ℝ ) = ℝ |
| 58 | 0pval | ⊢ ( 𝑥 ∈ ℂ → ( 0𝑝 ‘ 𝑥 ) = 0 ) | |
| 59 | 58 | adantl | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑥 ∈ ℂ ) → ( 0𝑝 ‘ 𝑥 ) = 0 ) |
| 60 | eqidd | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 𝑥 ) ) | |
| 61 | 51 43 53 54 57 59 60 | ofrfval | ⊢ ( 𝑓 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ 𝑓 ↔ ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝑓 ‘ 𝑥 ) ) ) |
| 62 | 61 | biimpa | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝑓 ) → ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝑓 ‘ 𝑥 ) ) |
| 63 | 42 | ffvelcdmda | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 𝑓 ‘ 𝑥 ) ∈ ℝ ) |
| 64 | elrege0 | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑓 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 65 | 64 | simplbi2 | ⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ℝ → ( 0 ≤ ( 𝑓 ‘ 𝑥 ) → ( 𝑓 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
| 66 | 63 65 | syl | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( 𝑓 ‘ 𝑥 ) → ( 𝑓 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
| 67 | 66 | ralimdva | ⊢ ( 𝑓 ∈ dom ∫1 → ( ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝑓 ‘ 𝑥 ) → ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
| 68 | 67 | imp | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝑓 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 69 | 62 68 | syldan | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝑓 ) → ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 70 | ffnfv | ⊢ ( 𝑓 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝑓 Fn ℝ ∧ ∀ 𝑥 ∈ ℝ ( 𝑓 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) | |
| 71 | 44 69 70 | sylanbrc | ⊢ ( ( 𝑓 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝑓 ) → 𝑓 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 72 | 71 | ex | ⊢ ( 𝑓 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ 𝑓 → 𝑓 : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 73 | 41 72 | vtoclga | ⊢ ( ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 → ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑚 ) → ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 74 | 30 38 73 | sylc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 75 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑄 ‘ 𝑚 ) ∈ dom ∫1 ) |
| 76 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝑄 ‘ 𝑛 ) = ( 𝑄 ‘ 𝑚 ) ) | |
| 77 | 76 | breq2d | ⊢ ( 𝑛 = 𝑚 → ( 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑛 ) ↔ 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑚 ) ) ) |
| 78 | fvoveq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑄 ‘ ( 𝑛 + 1 ) ) = ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) | |
| 79 | 76 78 | breq12d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑄 ‘ 𝑛 ) ∘r ≤ ( 𝑄 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝑄 ‘ 𝑚 ) ∘r ≤ ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) ) |
| 80 | 77 79 | anbi12d | ⊢ ( 𝑛 = 𝑚 → ( ( 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑛 ) ∧ ( 𝑄 ‘ 𝑛 ) ∘r ≤ ( 𝑄 ‘ ( 𝑛 + 1 ) ) ) ↔ ( 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑚 ) ∧ ( 𝑄 ‘ 𝑚 ) ∘r ≤ ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) ) ) |
| 81 | 80 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑛 ) ∧ ( 𝑄 ‘ 𝑛 ) ∘r ≤ ( 𝑄 ‘ ( 𝑛 + 1 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑚 ) ∧ ( 𝑄 ‘ 𝑚 ) ∘r ≤ ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) ) |
| 82 | 11 81 | sylan | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑚 ) ∧ ( 𝑄 ‘ 𝑚 ) ∘r ≤ ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) ) |
| 83 | 82 | simpld | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑚 ) ) |
| 84 | breq2 | ⊢ ( 𝑓 = ( 𝑄 ‘ 𝑚 ) → ( 0𝑝 ∘r ≤ 𝑓 ↔ 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑚 ) ) ) | |
| 85 | feq1 | ⊢ ( 𝑓 = ( 𝑄 ‘ 𝑚 ) → ( 𝑓 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝑄 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) | |
| 86 | 84 85 | imbi12d | ⊢ ( 𝑓 = ( 𝑄 ‘ 𝑚 ) → ( ( 0𝑝 ∘r ≤ 𝑓 → 𝑓 : ℝ ⟶ ( 0 [,) +∞ ) ) ↔ ( 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑚 ) → ( 𝑄 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) ) |
| 87 | 86 72 | vtoclga | ⊢ ( ( 𝑄 ‘ 𝑚 ) ∈ dom ∫1 → ( 0𝑝 ∘r ≤ ( 𝑄 ‘ 𝑚 ) → ( 𝑄 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) ) |
| 88 | 75 83 87 | sylc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑄 ‘ 𝑚 ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 89 | 16 | a1i | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ℝ ∈ V ) |
| 90 | 29 74 88 89 89 18 | off | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 91 | 0plef | ⊢ ( ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ) ) | |
| 92 | 90 91 | sylib | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ) ) |
| 93 | 92 | simprd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0𝑝 ∘r ≤ ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ) |
| 94 | 7 | ffnd | ⊢ ( 𝜑 → 𝑃 Fn ℕ ) |
| 95 | 10 | ffnd | ⊢ ( 𝜑 → 𝑄 Fn ℕ ) |
| 96 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) = ( 𝑃 ‘ 𝑚 ) ) | |
| 97 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑄 ‘ 𝑚 ) = ( 𝑄 ‘ 𝑚 ) ) | |
| 98 | 94 95 25 25 26 96 97 | ofval | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) = ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ) |
| 99 | 93 98 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0𝑝 ∘r ≤ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) |
| 100 | i1ff | ⊢ ( ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 → ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ ) | |
| 101 | 30 100 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) : ℝ ⟶ ℝ ) |
| 102 | 101 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ∈ ℝ ) |
| 103 | i1ff | ⊢ ( ( 𝑄 ‘ 𝑚 ) ∈ dom ∫1 → ( 𝑄 ‘ 𝑚 ) : ℝ ⟶ ℝ ) | |
| 104 | 75 103 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑄 ‘ 𝑚 ) : ℝ ⟶ ℝ ) |
| 105 | 104 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ∈ ℝ ) |
| 106 | peano2nn | ⊢ ( 𝑚 ∈ ℕ → ( 𝑚 + 1 ) ∈ ℕ ) | |
| 107 | ffvelcdm | ⊢ ( ( 𝑃 : ℕ ⟶ dom ∫1 ∧ ( 𝑚 + 1 ) ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∈ dom ∫1 ) | |
| 108 | 7 106 107 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∈ dom ∫1 ) |
| 109 | i1ff | ⊢ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∈ dom ∫1 → ( 𝑃 ‘ ( 𝑚 + 1 ) ) : ℝ ⟶ ℝ ) | |
| 110 | 108 109 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) : ℝ ⟶ ℝ ) |
| 111 | 110 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ∈ ℝ ) |
| 112 | ffvelcdm | ⊢ ( ( 𝑄 : ℕ ⟶ dom ∫1 ∧ ( 𝑚 + 1 ) ∈ ℕ ) → ( 𝑄 ‘ ( 𝑚 + 1 ) ) ∈ dom ∫1 ) | |
| 113 | 10 106 112 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑄 ‘ ( 𝑚 + 1 ) ) ∈ dom ∫1 ) |
| 114 | i1ff | ⊢ ( ( 𝑄 ‘ ( 𝑚 + 1 ) ) ∈ dom ∫1 → ( 𝑄 ‘ ( 𝑚 + 1 ) ) : ℝ ⟶ ℝ ) | |
| 115 | 113 114 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑄 ‘ ( 𝑚 + 1 ) ) : ℝ ⟶ ℝ ) |
| 116 | 115 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑄 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ∈ ℝ ) |
| 117 | 37 | simprd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) |
| 118 | 101 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) Fn ℝ ) |
| 119 | 110 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) Fn ℝ ) |
| 120 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) | |
| 121 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) | |
| 122 | 118 119 89 89 18 120 121 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ∘r ≤ ( 𝑃 ‘ ( 𝑚 + 1 ) ) ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) ) |
| 123 | 117 122 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 124 | 123 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 125 | 82 | simprd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑄 ‘ 𝑚 ) ∘r ≤ ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) |
| 126 | 104 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑄 ‘ 𝑚 ) Fn ℝ ) |
| 127 | 115 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑄 ‘ ( 𝑚 + 1 ) ) Fn ℝ ) |
| 128 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) = ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) | |
| 129 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑄 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) = ( ( 𝑄 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) | |
| 130 | 126 127 89 89 18 128 129 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑄 ‘ 𝑚 ) ∘r ≤ ( 𝑄 ‘ ( 𝑚 + 1 ) ) ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑄 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) ) |
| 131 | 125 130 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑄 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 132 | 131 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ≤ ( ( 𝑄 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) |
| 133 | 102 105 111 116 124 132 | le2addd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) + ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) ≤ ( ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) + ( ( 𝑄 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) ) |
| 134 | 133 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) + ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) ≤ ( ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) + ( ( 𝑄 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) ) |
| 135 | 30 75 | i1fadd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ∈ dom ∫1 ) |
| 136 | i1ff | ⊢ ( ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ∈ dom ∫1 → ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) : ℝ ⟶ ℝ ) | |
| 137 | ffn | ⊢ ( ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) : ℝ ⟶ ℝ → ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) Fn ℝ ) | |
| 138 | 135 136 137 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) Fn ℝ ) |
| 139 | 108 113 | i1fadd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∘f + ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) ∈ dom ∫1 ) |
| 140 | i1ff | ⊢ ( ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∘f + ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) ∈ dom ∫1 → ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∘f + ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) : ℝ ⟶ ℝ ) | |
| 141 | 139 140 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∘f + ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) : ℝ ⟶ ℝ ) |
| 142 | 141 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∘f + ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) Fn ℝ ) |
| 143 | 118 126 89 89 18 120 128 | ofval | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ‘ 𝑦 ) = ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) + ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 144 | 119 127 89 89 18 121 129 | ofval | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∘f + ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) ‘ 𝑦 ) = ( ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) + ( ( 𝑄 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) ) |
| 145 | 138 142 89 89 18 143 144 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ∘r ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∘f + ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) ↔ ∀ 𝑦 ∈ ℝ ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) + ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) ≤ ( ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) + ( ( 𝑄 ‘ ( 𝑚 + 1 ) ) ‘ 𝑦 ) ) ) ) |
| 146 | 134 145 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ∘r ≤ ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∘f + ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) ) |
| 147 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ℕ ) → ( 𝑃 ‘ ( 𝑚 + 1 ) ) = ( 𝑃 ‘ ( 𝑚 + 1 ) ) ) | |
| 148 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ℕ ) → ( 𝑄 ‘ ( 𝑚 + 1 ) ) = ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) | |
| 149 | 94 95 25 25 26 147 148 | ofval | ⊢ ( ( 𝜑 ∧ ( 𝑚 + 1 ) ∈ ℕ ) → ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ ( 𝑚 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∘f + ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) ) |
| 150 | 106 149 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ ( 𝑚 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑚 + 1 ) ) ∘f + ( 𝑄 ‘ ( 𝑚 + 1 ) ) ) ) |
| 151 | 146 98 150 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ∘r ≤ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ ( 𝑚 + 1 ) ) ) |
| 152 | 99 151 | jca | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ∧ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ∘r ≤ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ ( 𝑚 + 1 ) ) ) ) |
| 153 | 152 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 0𝑝 ∘r ≤ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ∧ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ∘r ≤ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ ( 𝑚 + 1 ) ) ) ) |
| 154 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) = ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) | |
| 155 | 154 | fveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) = ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 156 | 155 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 157 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 158 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℤ ) | |
| 159 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) | |
| 160 | 159 | mpteq2dv | ⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 161 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 162 | 160 161 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ) |
| 163 | 162 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
| 164 | 9 163 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
| 165 | 24 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ V |
| 166 | 165 | a1i | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) ∈ V ) |
| 167 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) | |
| 168 | 167 | mpteq2dv | ⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 169 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 170 | 168 169 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) ) |
| 171 | 170 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) |
| 172 | 12 171 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐺 ‘ 𝑦 ) ) |
| 173 | 31 | fveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 174 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) | |
| 175 | fvex | ⊢ ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ∈ V | |
| 176 | 173 174 175 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 177 | 176 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) = ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 178 | 102 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) ∈ ℝ ) |
| 179 | 177 178 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 180 | 179 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 181 | 76 | fveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 182 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) | |
| 183 | fvex | ⊢ ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ∈ V | |
| 184 | 181 182 183 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) = ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 185 | 184 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) = ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 186 | 105 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ∈ ℝ ) |
| 187 | 185 186 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ∈ ℝ ) |
| 188 | 187 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 189 | 98 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) = ( ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ‘ 𝑦 ) ) |
| 190 | 189 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) = ( ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ‘ 𝑦 ) ) |
| 191 | 190 143 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) = ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) + ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 192 | 191 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) = ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) + ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 193 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) | |
| 194 | fvex | ⊢ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) ∈ V | |
| 195 | 155 193 194 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) = ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 196 | 195 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) = ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) ) |
| 197 | 177 185 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) + ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ) = ( ( ( 𝑃 ‘ 𝑚 ) ‘ 𝑦 ) + ( ( 𝑄 ‘ 𝑚 ) ‘ 𝑦 ) ) ) |
| 198 | 192 196 197 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) = ( ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) + ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑄 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑚 ) ) ) |
| 199 | 157 158 164 166 172 180 188 198 | climadd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) |
| 200 | 156 199 | eqbrtrrid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) ) ⇝ ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) |
| 201 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 202 | 5 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn ℝ ) |
| 203 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 204 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) | |
| 205 | 201 202 17 17 18 203 204 | ofval | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) |
| 206 | 200 205 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) ) ⇝ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) ) |
| 207 | 206 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ℝ ( 𝑚 ∈ ℕ ↦ ( ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ‘ 𝑦 ) ) ⇝ ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) ) |
| 208 | 2fveq3 | ⊢ ( 𝑛 = 𝑗 → ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ) = ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑗 ) ) ) | |
| 209 | 208 | cbvmptv | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑗 ) ) ) |
| 210 | 3 6 | readdcld | ⊢ ( 𝜑 → ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∈ ℝ ) |
| 211 | 98 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) = ( ∫1 ‘ ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ) ) |
| 212 | 30 75 | itg1add | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫1 ‘ ( ( 𝑃 ‘ 𝑚 ) ∘f + ( 𝑄 ‘ 𝑚 ) ) ) = ( ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) + ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) ) |
| 213 | 211 212 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) = ( ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) + ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) ) |
| 214 | itg1cl | ⊢ ( ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ∈ ℝ ) | |
| 215 | 30 214 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ∈ ℝ ) |
| 216 | itg1cl | ⊢ ( ( 𝑄 ‘ 𝑚 ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ∈ ℝ ) | |
| 217 | 75 216 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ∈ ℝ ) |
| 218 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 219 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
| 220 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 221 | icossicc | ⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) | |
| 222 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 223 | 220 221 222 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 224 | 1 2 7 8 9 | itg2i1fseqle | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∘r ≤ 𝐹 ) |
| 225 | itg2ub | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 ∧ ( 𝑃 ‘ 𝑚 ) ∘r ≤ 𝐹 ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) | |
| 226 | 223 30 224 225 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐹 ) ) |
| 227 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 228 | fss | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) | |
| 229 | 227 221 228 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 230 | 4 5 10 11 12 | itg2i1fseqle | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑄 ‘ 𝑚 ) ∘r ≤ 𝐺 ) |
| 231 | itg2ub | ⊢ ( ( 𝐺 : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑄 ‘ 𝑚 ) ∈ dom ∫1 ∧ ( 𝑄 ‘ 𝑚 ) ∘r ≤ 𝐺 ) → ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) | |
| 232 | 229 75 230 231 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ≤ ( ∫2 ‘ 𝐺 ) ) |
| 233 | 215 217 218 219 226 232 | le2addd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) + ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 234 | 213 233 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 235 | 234 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 236 | 2fveq3 | ⊢ ( 𝑚 = 𝑘 → ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) = ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑘 ) ) ) | |
| 237 | 236 | breq1d | ⊢ ( 𝑚 = 𝑘 → ( ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ↔ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑘 ) ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) |
| 238 | 237 | rspccva | ⊢ ( ( ∀ 𝑚 ∈ ℕ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑘 ) ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 239 | 235 238 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑘 ) ) ≤ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 240 | 13 19 27 153 207 209 210 239 | itg2i1fseq2 | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ) ) ⇝ ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) ) |
| 241 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 242 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) | |
| 243 | 1 2 7 8 9 242 3 | itg2i1fseq3 | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) ⇝ ( ∫2 ‘ 𝐹 ) ) |
| 244 | 24 | mptex | ⊢ ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ) ) ∈ V |
| 245 | 244 | a1i | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ) ) ∈ V ) |
| 246 | eqid | ⊢ ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) | |
| 247 | 4 5 10 11 12 246 6 | itg2i1fseq3 | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) ⇝ ( ∫2 ‘ 𝐺 ) ) |
| 248 | 2fveq3 | ⊢ ( 𝑘 = 𝑚 → ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | |
| 249 | fvex | ⊢ ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ∈ V | |
| 250 | 248 242 249 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) ‘ 𝑚 ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
| 251 | 250 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) ‘ 𝑚 ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) |
| 252 | 215 | recnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ∈ ℂ ) |
| 253 | 251 252 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 254 | 2fveq3 | ⊢ ( 𝑘 = 𝑚 → ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) = ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) | |
| 255 | fvex | ⊢ ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ∈ V | |
| 256 | 254 246 255 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) ‘ 𝑚 ) = ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) |
| 257 | 256 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) ‘ 𝑚 ) = ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) |
| 258 | 217 | recnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ∈ ℂ ) |
| 259 | 257 258 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 260 | 2fveq3 | ⊢ ( 𝑗 = 𝑚 → ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑗 ) ) = ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) ) | |
| 261 | fvex | ⊢ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) ∈ V | |
| 262 | 260 209 261 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) ) |
| 263 | 262 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑚 ) ) ) |
| 264 | 251 257 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) ‘ 𝑚 ) + ( ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) ‘ 𝑚 ) ) = ( ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) + ( ∫1 ‘ ( 𝑄 ‘ 𝑚 ) ) ) ) |
| 265 | 213 263 264 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ) ) ‘ 𝑚 ) = ( ( ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) ‘ 𝑚 ) + ( ( 𝑘 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑄 ‘ 𝑘 ) ) ) ‘ 𝑚 ) ) ) |
| 266 | 157 241 243 245 247 253 259 265 | climadd | ⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ) ) ⇝ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 267 | climuni | ⊢ ( ( ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ) ) ⇝ ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) ∧ ( 𝑛 ∈ ℕ ↦ ( ∫1 ‘ ( ( 𝑃 ∘f ∘f + 𝑄 ) ‘ 𝑛 ) ) ) ⇝ ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) | |
| 268 | 240 266 267 | syl2anc | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |