This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an extension to the results of itg2i1fseq , if there is an upper bound on the integrals of the simple functions approaching F , then S.2 F is real and the standard limit relation applies. (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2i1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| itg2i1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| itg2i1fseq.3 | ⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) | ||
| itg2i1fseq.4 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) | ||
| itg2i1fseq.5 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) | ||
| itg2i1fseq.6 | ⊢ 𝑆 = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | ||
| itg2i1fseq2.7 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| itg2i1fseq2.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ≤ 𝑀 ) | ||
| Assertion | itg2i1fseq2 | ⊢ ( 𝜑 → 𝑆 ⇝ ( ∫2 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2i1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | itg2i1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 3 | itg2i1fseq.3 | ⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) | |
| 4 | itg2i1fseq.4 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 5 | itg2i1fseq.5 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) | |
| 6 | itg2i1fseq.6 | ⊢ 𝑆 = ( 𝑚 ∈ ℕ ↦ ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ) | |
| 7 | itg2i1fseq2.7 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 8 | itg2i1fseq2.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ≤ 𝑀 ) | |
| 9 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 10 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 11 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 ) |
| 12 | itg1cl | ⊢ ( ( 𝑃 ‘ 𝑚 ) ∈ dom ∫1 → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ∈ ℝ ) | |
| 13 | 11 12 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) ∈ ℝ ) |
| 14 | 13 6 | fmptd | ⊢ ( 𝜑 → 𝑆 : ℕ ⟶ ℝ ) |
| 15 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∈ dom ∫1 ) |
| 16 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 17 | ffvelcdm | ⊢ ( ( 𝑃 : ℕ ⟶ dom ∫1 ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ dom ∫1 ) | |
| 18 | 3 16 17 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ dom ∫1 ) |
| 19 | simpr | ⊢ ( ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) | |
| 20 | 19 | ralimi | ⊢ ( ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) |
| 21 | 4 20 | syl | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑘 ) ) | |
| 23 | fvoveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑃 ‘ ( 𝑛 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) | |
| 24 | 22 23 | breq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 25 | 24 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 26 | 21 25 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 27 | itg1le | ⊢ ( ( ( 𝑃 ‘ 𝑘 ) ∈ dom ∫1 ∧ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ dom ∫1 ∧ ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ≤ ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 28 | 15 18 26 27 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ≤ ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 29 | 2fveq3 | ⊢ ( 𝑚 = 𝑘 → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) | |
| 30 | fvex | ⊢ ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ∈ V | |
| 31 | 29 6 30 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝑆 ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) |
| 32 | 31 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) = ( ∫1 ‘ ( 𝑃 ‘ 𝑘 ) ) ) |
| 33 | 2fveq3 | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ∫1 ‘ ( 𝑃 ‘ 𝑚 ) ) = ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) | |
| 34 | fvex | ⊢ ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ∈ V | |
| 35 | 33 6 34 | fvmpt | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 36 | 16 35 | syl | ⊢ ( 𝑘 ∈ ℕ → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ∫1 ‘ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 38 | 28 32 37 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ≤ ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) |
| 39 | 32 8 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ≤ 𝑀 ) |
| 40 | 39 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑀 ) |
| 41 | brralrspcev | ⊢ ( ( 𝑀 ∈ ℝ ∧ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑀 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑧 ) | |
| 42 | 7 40 41 | syl2anc | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑧 ) |
| 43 | 9 10 14 38 42 | climsup | ⊢ ( 𝜑 → 𝑆 ⇝ sup ( ran 𝑆 , ℝ , < ) ) |
| 44 | 1 2 3 4 5 6 | itg2i1fseq | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| 45 | 14 | frnd | ⊢ ( 𝜑 → ran 𝑆 ⊆ ℝ ) |
| 46 | 6 13 | dmmptd | ⊢ ( 𝜑 → dom 𝑆 = ℕ ) |
| 47 | 1nn | ⊢ 1 ∈ ℕ | |
| 48 | ne0i | ⊢ ( 1 ∈ ℕ → ℕ ≠ ∅ ) | |
| 49 | 47 48 | mp1i | ⊢ ( 𝜑 → ℕ ≠ ∅ ) |
| 50 | 46 49 | eqnetrd | ⊢ ( 𝜑 → dom 𝑆 ≠ ∅ ) |
| 51 | dm0rn0 | ⊢ ( dom 𝑆 = ∅ ↔ ran 𝑆 = ∅ ) | |
| 52 | 51 | necon3bii | ⊢ ( dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅ ) |
| 53 | 50 52 | sylib | ⊢ ( 𝜑 → ran 𝑆 ≠ ∅ ) |
| 54 | ffn | ⊢ ( 𝑆 : ℕ ⟶ ℝ → 𝑆 Fn ℕ ) | |
| 55 | breq1 | ⊢ ( 𝑦 = ( 𝑆 ‘ 𝑘 ) → ( 𝑦 ≤ 𝑧 ↔ ( 𝑆 ‘ 𝑘 ) ≤ 𝑧 ) ) | |
| 56 | 55 | ralrn | ⊢ ( 𝑆 Fn ℕ → ( ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑧 ) ) |
| 57 | 14 54 56 | 3syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑧 ) ) |
| 58 | 57 | rexbidv | ⊢ ( 𝜑 → ( ∃ 𝑧 ∈ ℝ ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ↔ ∃ 𝑧 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑧 ) ) |
| 59 | 42 58 | mpbird | ⊢ ( 𝜑 → ∃ 𝑧 ∈ ℝ ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ) |
| 60 | supxrre | ⊢ ( ( ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃ 𝑧 ∈ ℝ ∀ 𝑦 ∈ ran 𝑆 𝑦 ≤ 𝑧 ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) | |
| 61 | 45 53 59 60 | syl3anc | ⊢ ( 𝜑 → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) |
| 62 | 44 61 | eqtrd | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) = sup ( ran 𝑆 , ℝ , < ) ) |
| 63 | 43 62 | breqtrrd | ⊢ ( 𝜑 → 𝑆 ⇝ ( ∫2 ‘ 𝐹 ) ) |