This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subject to the conditions coming from mbfi1fseq , the sequence of simple functions are all less than the target function F . (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2i1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| itg2i1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| itg2i1fseq.3 | ⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) | ||
| itg2i1fseq.4 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) | ||
| itg2i1fseq.5 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) | ||
| Assertion | itg2i1fseqle | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( 𝑃 ‘ 𝑀 ) ∘r ≤ 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2i1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | itg2i1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 3 | itg2i1fseq.3 | ⊢ ( 𝜑 → 𝑃 : ℕ ⟶ dom ∫1 ) | |
| 4 | itg2i1fseq.4 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 5 | itg2i1fseq.5 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) | |
| 6 | fveq2 | ⊢ ( 𝑛 = 𝑀 → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑀 ) ) | |
| 7 | 6 | fveq1d | ⊢ ( 𝑛 = 𝑀 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ) |
| 8 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) | |
| 9 | fvex | ⊢ ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ∈ V | |
| 10 | 7 8 9 | fvmpt | ⊢ ( 𝑀 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑀 ) = ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ) |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑀 ) = ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ) |
| 12 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 13 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → 𝑀 ∈ ℕ ) | |
| 14 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) | |
| 15 | 14 | mpteq2dv | ⊢ ( 𝑥 = 𝑦 → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) = ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ) |
| 16 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 17 | 15 16 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) ) |
| 18 | 17 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
| 19 | 5 18 | sylan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
| 20 | 19 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ⇝ ( 𝐹 ‘ 𝑦 ) ) |
| 21 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ 𝑘 ) ) | |
| 22 | 21 | fveq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ) |
| 23 | fvex | ⊢ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ∈ V | |
| 24 | 22 8 23 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ) |
| 26 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∈ dom ∫1 ) |
| 27 | i1ff | ⊢ ( ( 𝑃 ‘ 𝑘 ) ∈ dom ∫1 → ( 𝑃 ‘ 𝑘 ) : ℝ ⟶ ℝ ) | |
| 28 | 26 27 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) : ℝ ⟶ ℝ ) |
| 29 | 28 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ∈ ℝ ) |
| 30 | 29 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ∈ ℝ ) |
| 31 | 25 30 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 32 | 31 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 33 | simpr | ⊢ ( ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) → ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) | |
| 34 | 33 | ralimi | ⊢ ( ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑃 ‘ 𝑛 ) ∧ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) → ∀ 𝑛 ∈ ℕ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) |
| 35 | 4 34 | syl | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ) |
| 36 | fvoveq1 | ⊢ ( 𝑛 = 𝑘 → ( 𝑃 ‘ ( 𝑛 + 1 ) ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) | |
| 37 | 21 36 | breq12d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) ) |
| 38 | 37 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ℕ ( 𝑃 ‘ 𝑛 ) ∘r ≤ ( 𝑃 ‘ ( 𝑛 + 1 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 39 | 35 38 | sylan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) |
| 40 | ffn | ⊢ ( ( 𝑃 ‘ 𝑘 ) : ℝ ⟶ ℝ → ( 𝑃 ‘ 𝑘 ) Fn ℝ ) | |
| 41 | 26 27 40 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ 𝑘 ) Fn ℝ ) |
| 42 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 43 | ffvelcdm | ⊢ ( ( 𝑃 : ℕ ⟶ dom ∫1 ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ dom ∫1 ) | |
| 44 | 3 42 43 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ dom ∫1 ) |
| 45 | i1ff | ⊢ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ∈ dom ∫1 → ( 𝑃 ‘ ( 𝑘 + 1 ) ) : ℝ ⟶ ℝ ) | |
| 46 | ffn | ⊢ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) : ℝ ⟶ ℝ → ( 𝑃 ‘ ( 𝑘 + 1 ) ) Fn ℝ ) | |
| 47 | 44 45 46 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑃 ‘ ( 𝑘 + 1 ) ) Fn ℝ ) |
| 48 | reex | ⊢ ℝ ∈ V | |
| 49 | 48 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ℝ ∈ V ) |
| 50 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 51 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ) | |
| 52 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) = ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) | |
| 53 | 41 47 49 49 50 51 52 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑘 ) ∘r ≤ ( 𝑃 ‘ ( 𝑘 + 1 ) ) ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) ) |
| 54 | 39 53 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
| 55 | 54 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
| 56 | 55 | an32s | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑘 ) ‘ 𝑦 ) ≤ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
| 57 | fveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑃 ‘ 𝑛 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) ) | |
| 58 | 57 | fveq1d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
| 59 | fvex | ⊢ ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ∈ V | |
| 60 | 58 8 59 | fvmpt | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
| 61 | 42 60 | syl | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
| 62 | 61 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑃 ‘ ( 𝑘 + 1 ) ) ‘ 𝑦 ) ) |
| 63 | 56 25 62 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 64 | 63 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑘 ) ≤ ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 65 | 12 13 20 32 64 | climub | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑛 ∈ ℕ ↦ ( ( 𝑃 ‘ 𝑛 ) ‘ 𝑦 ) ) ‘ 𝑀 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 66 | 11 65 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 67 | 66 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 68 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( 𝑃 ‘ 𝑀 ) ∈ dom ∫1 ) |
| 69 | i1ff | ⊢ ( ( 𝑃 ‘ 𝑀 ) ∈ dom ∫1 → ( 𝑃 ‘ 𝑀 ) : ℝ ⟶ ℝ ) | |
| 70 | ffn | ⊢ ( ( 𝑃 ‘ 𝑀 ) : ℝ ⟶ ℝ → ( 𝑃 ‘ 𝑀 ) Fn ℝ ) | |
| 71 | 68 69 70 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( 𝑃 ‘ 𝑀 ) Fn ℝ ) |
| 72 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℝ ) |
| 73 | 72 | adantr | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → 𝐹 Fn ℝ ) |
| 74 | 48 | a1i | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ℝ ∈ V ) |
| 75 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) = ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ) | |
| 76 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 77 | 71 73 74 74 50 75 76 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( ( 𝑃 ‘ 𝑀 ) ∘r ≤ 𝐹 ↔ ∀ 𝑦 ∈ ℝ ( ( 𝑃 ‘ 𝑀 ) ‘ 𝑦 ) ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 78 | 67 77 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( 𝑃 ‘ 𝑀 ) ∘r ≤ 𝐹 ) |