This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for itg2add . (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2add.f1 | |- ( ph -> F e. MblFn ) |
|
| itg2add.f2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
||
| itg2add.f3 | |- ( ph -> ( S.2 ` F ) e. RR ) |
||
| itg2add.g1 | |- ( ph -> G e. MblFn ) |
||
| itg2add.g2 | |- ( ph -> G : RR --> ( 0 [,) +oo ) ) |
||
| itg2add.g3 | |- ( ph -> ( S.2 ` G ) e. RR ) |
||
| itg2add.p1 | |- ( ph -> P : NN --> dom S.1 ) |
||
| itg2add.p2 | |- ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) |
||
| itg2add.p3 | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
||
| itg2add.q1 | |- ( ph -> Q : NN --> dom S.1 ) |
||
| itg2add.q2 | |- ( ph -> A. n e. NN ( 0p oR <_ ( Q ` n ) /\ ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) ) ) |
||
| itg2add.q3 | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) ) |
||
| Assertion | itg2addlem | |- ( ph -> ( S.2 ` ( F oF + G ) ) = ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2add.f1 | |- ( ph -> F e. MblFn ) |
|
| 2 | itg2add.f2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 3 | itg2add.f3 | |- ( ph -> ( S.2 ` F ) e. RR ) |
|
| 4 | itg2add.g1 | |- ( ph -> G e. MblFn ) |
|
| 5 | itg2add.g2 | |- ( ph -> G : RR --> ( 0 [,) +oo ) ) |
|
| 6 | itg2add.g3 | |- ( ph -> ( S.2 ` G ) e. RR ) |
|
| 7 | itg2add.p1 | |- ( ph -> P : NN --> dom S.1 ) |
|
| 8 | itg2add.p2 | |- ( ph -> A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) ) |
|
| 9 | itg2add.p3 | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) ) |
|
| 10 | itg2add.q1 | |- ( ph -> Q : NN --> dom S.1 ) |
|
| 11 | itg2add.q2 | |- ( ph -> A. n e. NN ( 0p oR <_ ( Q ` n ) /\ ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) ) ) |
|
| 12 | itg2add.q3 | |- ( ph -> A. x e. RR ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) ) |
|
| 13 | 1 4 | mbfadd | |- ( ph -> ( F oF + G ) e. MblFn ) |
| 14 | ge0addcl | |- ( ( y e. ( 0 [,) +oo ) /\ z e. ( 0 [,) +oo ) ) -> ( y + z ) e. ( 0 [,) +oo ) ) |
|
| 15 | 14 | adantl | |- ( ( ph /\ ( y e. ( 0 [,) +oo ) /\ z e. ( 0 [,) +oo ) ) ) -> ( y + z ) e. ( 0 [,) +oo ) ) |
| 16 | reex | |- RR e. _V |
|
| 17 | 16 | a1i | |- ( ph -> RR e. _V ) |
| 18 | inidm | |- ( RR i^i RR ) = RR |
|
| 19 | 15 2 5 17 17 18 | off | |- ( ph -> ( F oF + G ) : RR --> ( 0 [,) +oo ) ) |
| 20 | simpl | |- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> f e. dom S.1 ) |
|
| 21 | simpr | |- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> g e. dom S.1 ) |
|
| 22 | 20 21 | i1fadd | |- ( ( f e. dom S.1 /\ g e. dom S.1 ) -> ( f oF + g ) e. dom S.1 ) |
| 23 | 22 | adantl | |- ( ( ph /\ ( f e. dom S.1 /\ g e. dom S.1 ) ) -> ( f oF + g ) e. dom S.1 ) |
| 24 | nnex | |- NN e. _V |
|
| 25 | 24 | a1i | |- ( ph -> NN e. _V ) |
| 26 | inidm | |- ( NN i^i NN ) = NN |
|
| 27 | 23 7 10 25 25 26 | off | |- ( ph -> ( P oF oF + Q ) : NN --> dom S.1 ) |
| 28 | ge0addcl | |- ( ( f e. ( 0 [,) +oo ) /\ g e. ( 0 [,) +oo ) ) -> ( f + g ) e. ( 0 [,) +oo ) ) |
|
| 29 | 28 | adantl | |- ( ( ( ph /\ m e. NN ) /\ ( f e. ( 0 [,) +oo ) /\ g e. ( 0 [,) +oo ) ) ) -> ( f + g ) e. ( 0 [,) +oo ) ) |
| 30 | 7 | ffvelcdmda | |- ( ( ph /\ m e. NN ) -> ( P ` m ) e. dom S.1 ) |
| 31 | fveq2 | |- ( n = m -> ( P ` n ) = ( P ` m ) ) |
|
| 32 | 31 | breq2d | |- ( n = m -> ( 0p oR <_ ( P ` n ) <-> 0p oR <_ ( P ` m ) ) ) |
| 33 | fvoveq1 | |- ( n = m -> ( P ` ( n + 1 ) ) = ( P ` ( m + 1 ) ) ) |
|
| 34 | 31 33 | breq12d | |- ( n = m -> ( ( P ` n ) oR <_ ( P ` ( n + 1 ) ) <-> ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) |
| 35 | 32 34 | anbi12d | |- ( n = m -> ( ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) <-> ( 0p oR <_ ( P ` m ) /\ ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) ) |
| 36 | 35 | rspccva | |- ( ( A. n e. NN ( 0p oR <_ ( P ` n ) /\ ( P ` n ) oR <_ ( P ` ( n + 1 ) ) ) /\ m e. NN ) -> ( 0p oR <_ ( P ` m ) /\ ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) |
| 37 | 8 36 | sylan | |- ( ( ph /\ m e. NN ) -> ( 0p oR <_ ( P ` m ) /\ ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) ) |
| 38 | 37 | simpld | |- ( ( ph /\ m e. NN ) -> 0p oR <_ ( P ` m ) ) |
| 39 | breq2 | |- ( f = ( P ` m ) -> ( 0p oR <_ f <-> 0p oR <_ ( P ` m ) ) ) |
|
| 40 | feq1 | |- ( f = ( P ` m ) -> ( f : RR --> ( 0 [,) +oo ) <-> ( P ` m ) : RR --> ( 0 [,) +oo ) ) ) |
|
| 41 | 39 40 | imbi12d | |- ( f = ( P ` m ) -> ( ( 0p oR <_ f -> f : RR --> ( 0 [,) +oo ) ) <-> ( 0p oR <_ ( P ` m ) -> ( P ` m ) : RR --> ( 0 [,) +oo ) ) ) ) |
| 42 | i1ff | |- ( f e. dom S.1 -> f : RR --> RR ) |
|
| 43 | 42 | ffnd | |- ( f e. dom S.1 -> f Fn RR ) |
| 44 | 43 | adantr | |- ( ( f e. dom S.1 /\ 0p oR <_ f ) -> f Fn RR ) |
| 45 | 0cn | |- 0 e. CC |
|
| 46 | fnconstg | |- ( 0 e. CC -> ( CC X. { 0 } ) Fn CC ) |
|
| 47 | 45 46 | ax-mp | |- ( CC X. { 0 } ) Fn CC |
| 48 | df-0p | |- 0p = ( CC X. { 0 } ) |
|
| 49 | 48 | fneq1i | |- ( 0p Fn CC <-> ( CC X. { 0 } ) Fn CC ) |
| 50 | 47 49 | mpbir | |- 0p Fn CC |
| 51 | 50 | a1i | |- ( f e. dom S.1 -> 0p Fn CC ) |
| 52 | cnex | |- CC e. _V |
|
| 53 | 52 | a1i | |- ( f e. dom S.1 -> CC e. _V ) |
| 54 | 16 | a1i | |- ( f e. dom S.1 -> RR e. _V ) |
| 55 | ax-resscn | |- RR C_ CC |
|
| 56 | sseqin2 | |- ( RR C_ CC <-> ( CC i^i RR ) = RR ) |
|
| 57 | 55 56 | mpbi | |- ( CC i^i RR ) = RR |
| 58 | 0pval | |- ( x e. CC -> ( 0p ` x ) = 0 ) |
|
| 59 | 58 | adantl | |- ( ( f e. dom S.1 /\ x e. CC ) -> ( 0p ` x ) = 0 ) |
| 60 | eqidd | |- ( ( f e. dom S.1 /\ x e. RR ) -> ( f ` x ) = ( f ` x ) ) |
|
| 61 | 51 43 53 54 57 59 60 | ofrfval | |- ( f e. dom S.1 -> ( 0p oR <_ f <-> A. x e. RR 0 <_ ( f ` x ) ) ) |
| 62 | 61 | biimpa | |- ( ( f e. dom S.1 /\ 0p oR <_ f ) -> A. x e. RR 0 <_ ( f ` x ) ) |
| 63 | 42 | ffvelcdmda | |- ( ( f e. dom S.1 /\ x e. RR ) -> ( f ` x ) e. RR ) |
| 64 | elrege0 | |- ( ( f ` x ) e. ( 0 [,) +oo ) <-> ( ( f ` x ) e. RR /\ 0 <_ ( f ` x ) ) ) |
|
| 65 | 64 | simplbi2 | |- ( ( f ` x ) e. RR -> ( 0 <_ ( f ` x ) -> ( f ` x ) e. ( 0 [,) +oo ) ) ) |
| 66 | 63 65 | syl | |- ( ( f e. dom S.1 /\ x e. RR ) -> ( 0 <_ ( f ` x ) -> ( f ` x ) e. ( 0 [,) +oo ) ) ) |
| 67 | 66 | ralimdva | |- ( f e. dom S.1 -> ( A. x e. RR 0 <_ ( f ` x ) -> A. x e. RR ( f ` x ) e. ( 0 [,) +oo ) ) ) |
| 68 | 67 | imp | |- ( ( f e. dom S.1 /\ A. x e. RR 0 <_ ( f ` x ) ) -> A. x e. RR ( f ` x ) e. ( 0 [,) +oo ) ) |
| 69 | 62 68 | syldan | |- ( ( f e. dom S.1 /\ 0p oR <_ f ) -> A. x e. RR ( f ` x ) e. ( 0 [,) +oo ) ) |
| 70 | ffnfv | |- ( f : RR --> ( 0 [,) +oo ) <-> ( f Fn RR /\ A. x e. RR ( f ` x ) e. ( 0 [,) +oo ) ) ) |
|
| 71 | 44 69 70 | sylanbrc | |- ( ( f e. dom S.1 /\ 0p oR <_ f ) -> f : RR --> ( 0 [,) +oo ) ) |
| 72 | 71 | ex | |- ( f e. dom S.1 -> ( 0p oR <_ f -> f : RR --> ( 0 [,) +oo ) ) ) |
| 73 | 41 72 | vtoclga | |- ( ( P ` m ) e. dom S.1 -> ( 0p oR <_ ( P ` m ) -> ( P ` m ) : RR --> ( 0 [,) +oo ) ) ) |
| 74 | 30 38 73 | sylc | |- ( ( ph /\ m e. NN ) -> ( P ` m ) : RR --> ( 0 [,) +oo ) ) |
| 75 | 10 | ffvelcdmda | |- ( ( ph /\ m e. NN ) -> ( Q ` m ) e. dom S.1 ) |
| 76 | fveq2 | |- ( n = m -> ( Q ` n ) = ( Q ` m ) ) |
|
| 77 | 76 | breq2d | |- ( n = m -> ( 0p oR <_ ( Q ` n ) <-> 0p oR <_ ( Q ` m ) ) ) |
| 78 | fvoveq1 | |- ( n = m -> ( Q ` ( n + 1 ) ) = ( Q ` ( m + 1 ) ) ) |
|
| 79 | 76 78 | breq12d | |- ( n = m -> ( ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) <-> ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) ) |
| 80 | 77 79 | anbi12d | |- ( n = m -> ( ( 0p oR <_ ( Q ` n ) /\ ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) ) <-> ( 0p oR <_ ( Q ` m ) /\ ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) ) ) |
| 81 | 80 | rspccva | |- ( ( A. n e. NN ( 0p oR <_ ( Q ` n ) /\ ( Q ` n ) oR <_ ( Q ` ( n + 1 ) ) ) /\ m e. NN ) -> ( 0p oR <_ ( Q ` m ) /\ ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) ) |
| 82 | 11 81 | sylan | |- ( ( ph /\ m e. NN ) -> ( 0p oR <_ ( Q ` m ) /\ ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) ) |
| 83 | 82 | simpld | |- ( ( ph /\ m e. NN ) -> 0p oR <_ ( Q ` m ) ) |
| 84 | breq2 | |- ( f = ( Q ` m ) -> ( 0p oR <_ f <-> 0p oR <_ ( Q ` m ) ) ) |
|
| 85 | feq1 | |- ( f = ( Q ` m ) -> ( f : RR --> ( 0 [,) +oo ) <-> ( Q ` m ) : RR --> ( 0 [,) +oo ) ) ) |
|
| 86 | 84 85 | imbi12d | |- ( f = ( Q ` m ) -> ( ( 0p oR <_ f -> f : RR --> ( 0 [,) +oo ) ) <-> ( 0p oR <_ ( Q ` m ) -> ( Q ` m ) : RR --> ( 0 [,) +oo ) ) ) ) |
| 87 | 86 72 | vtoclga | |- ( ( Q ` m ) e. dom S.1 -> ( 0p oR <_ ( Q ` m ) -> ( Q ` m ) : RR --> ( 0 [,) +oo ) ) ) |
| 88 | 75 83 87 | sylc | |- ( ( ph /\ m e. NN ) -> ( Q ` m ) : RR --> ( 0 [,) +oo ) ) |
| 89 | 16 | a1i | |- ( ( ph /\ m e. NN ) -> RR e. _V ) |
| 90 | 29 74 88 89 89 18 | off | |- ( ( ph /\ m e. NN ) -> ( ( P ` m ) oF + ( Q ` m ) ) : RR --> ( 0 [,) +oo ) ) |
| 91 | 0plef | |- ( ( ( P ` m ) oF + ( Q ` m ) ) : RR --> ( 0 [,) +oo ) <-> ( ( ( P ` m ) oF + ( Q ` m ) ) : RR --> RR /\ 0p oR <_ ( ( P ` m ) oF + ( Q ` m ) ) ) ) |
|
| 92 | 90 91 | sylib | |- ( ( ph /\ m e. NN ) -> ( ( ( P ` m ) oF + ( Q ` m ) ) : RR --> RR /\ 0p oR <_ ( ( P ` m ) oF + ( Q ` m ) ) ) ) |
| 93 | 92 | simprd | |- ( ( ph /\ m e. NN ) -> 0p oR <_ ( ( P ` m ) oF + ( Q ` m ) ) ) |
| 94 | 7 | ffnd | |- ( ph -> P Fn NN ) |
| 95 | 10 | ffnd | |- ( ph -> Q Fn NN ) |
| 96 | eqidd | |- ( ( ph /\ m e. NN ) -> ( P ` m ) = ( P ` m ) ) |
|
| 97 | eqidd | |- ( ( ph /\ m e. NN ) -> ( Q ` m ) = ( Q ` m ) ) |
|
| 98 | 94 95 25 25 26 96 97 | ofval | |- ( ( ph /\ m e. NN ) -> ( ( P oF oF + Q ) ` m ) = ( ( P ` m ) oF + ( Q ` m ) ) ) |
| 99 | 93 98 | breqtrrd | |- ( ( ph /\ m e. NN ) -> 0p oR <_ ( ( P oF oF + Q ) ` m ) ) |
| 100 | i1ff | |- ( ( P ` m ) e. dom S.1 -> ( P ` m ) : RR --> RR ) |
|
| 101 | 30 100 | syl | |- ( ( ph /\ m e. NN ) -> ( P ` m ) : RR --> RR ) |
| 102 | 101 | ffvelcdmda | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) e. RR ) |
| 103 | i1ff | |- ( ( Q ` m ) e. dom S.1 -> ( Q ` m ) : RR --> RR ) |
|
| 104 | 75 103 | syl | |- ( ( ph /\ m e. NN ) -> ( Q ` m ) : RR --> RR ) |
| 105 | 104 | ffvelcdmda | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` m ) ` y ) e. RR ) |
| 106 | peano2nn | |- ( m e. NN -> ( m + 1 ) e. NN ) |
|
| 107 | ffvelcdm | |- ( ( P : NN --> dom S.1 /\ ( m + 1 ) e. NN ) -> ( P ` ( m + 1 ) ) e. dom S.1 ) |
|
| 108 | 7 106 107 | syl2an | |- ( ( ph /\ m e. NN ) -> ( P ` ( m + 1 ) ) e. dom S.1 ) |
| 109 | i1ff | |- ( ( P ` ( m + 1 ) ) e. dom S.1 -> ( P ` ( m + 1 ) ) : RR --> RR ) |
|
| 110 | 108 109 | syl | |- ( ( ph /\ m e. NN ) -> ( P ` ( m + 1 ) ) : RR --> RR ) |
| 111 | 110 | ffvelcdmda | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` ( m + 1 ) ) ` y ) e. RR ) |
| 112 | ffvelcdm | |- ( ( Q : NN --> dom S.1 /\ ( m + 1 ) e. NN ) -> ( Q ` ( m + 1 ) ) e. dom S.1 ) |
|
| 113 | 10 106 112 | syl2an | |- ( ( ph /\ m e. NN ) -> ( Q ` ( m + 1 ) ) e. dom S.1 ) |
| 114 | i1ff | |- ( ( Q ` ( m + 1 ) ) e. dom S.1 -> ( Q ` ( m + 1 ) ) : RR --> RR ) |
|
| 115 | 113 114 | syl | |- ( ( ph /\ m e. NN ) -> ( Q ` ( m + 1 ) ) : RR --> RR ) |
| 116 | 115 | ffvelcdmda | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` ( m + 1 ) ) ` y ) e. RR ) |
| 117 | 37 | simprd | |- ( ( ph /\ m e. NN ) -> ( P ` m ) oR <_ ( P ` ( m + 1 ) ) ) |
| 118 | 101 | ffnd | |- ( ( ph /\ m e. NN ) -> ( P ` m ) Fn RR ) |
| 119 | 110 | ffnd | |- ( ( ph /\ m e. NN ) -> ( P ` ( m + 1 ) ) Fn RR ) |
| 120 | eqidd | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) = ( ( P ` m ) ` y ) ) |
|
| 121 | eqidd | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` ( m + 1 ) ) ` y ) = ( ( P ` ( m + 1 ) ) ` y ) ) |
|
| 122 | 118 119 89 89 18 120 121 | ofrfval | |- ( ( ph /\ m e. NN ) -> ( ( P ` m ) oR <_ ( P ` ( m + 1 ) ) <-> A. y e. RR ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) ) |
| 123 | 117 122 | mpbid | |- ( ( ph /\ m e. NN ) -> A. y e. RR ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) |
| 124 | 123 | r19.21bi | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( P ` m ) ` y ) <_ ( ( P ` ( m + 1 ) ) ` y ) ) |
| 125 | 82 | simprd | |- ( ( ph /\ m e. NN ) -> ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) ) |
| 126 | 104 | ffnd | |- ( ( ph /\ m e. NN ) -> ( Q ` m ) Fn RR ) |
| 127 | 115 | ffnd | |- ( ( ph /\ m e. NN ) -> ( Q ` ( m + 1 ) ) Fn RR ) |
| 128 | eqidd | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` m ) ` y ) = ( ( Q ` m ) ` y ) ) |
|
| 129 | eqidd | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` ( m + 1 ) ) ` y ) = ( ( Q ` ( m + 1 ) ) ` y ) ) |
|
| 130 | 126 127 89 89 18 128 129 | ofrfval | |- ( ( ph /\ m e. NN ) -> ( ( Q ` m ) oR <_ ( Q ` ( m + 1 ) ) <-> A. y e. RR ( ( Q ` m ) ` y ) <_ ( ( Q ` ( m + 1 ) ) ` y ) ) ) |
| 131 | 125 130 | mpbid | |- ( ( ph /\ m e. NN ) -> A. y e. RR ( ( Q ` m ) ` y ) <_ ( ( Q ` ( m + 1 ) ) ` y ) ) |
| 132 | 131 | r19.21bi | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( Q ` m ) ` y ) <_ ( ( Q ` ( m + 1 ) ) ` y ) ) |
| 133 | 102 105 111 116 124 132 | le2addd | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) <_ ( ( ( P ` ( m + 1 ) ) ` y ) + ( ( Q ` ( m + 1 ) ) ` y ) ) ) |
| 134 | 133 | ralrimiva | |- ( ( ph /\ m e. NN ) -> A. y e. RR ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) <_ ( ( ( P ` ( m + 1 ) ) ` y ) + ( ( Q ` ( m + 1 ) ) ` y ) ) ) |
| 135 | 30 75 | i1fadd | |- ( ( ph /\ m e. NN ) -> ( ( P ` m ) oF + ( Q ` m ) ) e. dom S.1 ) |
| 136 | i1ff | |- ( ( ( P ` m ) oF + ( Q ` m ) ) e. dom S.1 -> ( ( P ` m ) oF + ( Q ` m ) ) : RR --> RR ) |
|
| 137 | ffn | |- ( ( ( P ` m ) oF + ( Q ` m ) ) : RR --> RR -> ( ( P ` m ) oF + ( Q ` m ) ) Fn RR ) |
|
| 138 | 135 136 137 | 3syl | |- ( ( ph /\ m e. NN ) -> ( ( P ` m ) oF + ( Q ` m ) ) Fn RR ) |
| 139 | 108 113 | i1fadd | |- ( ( ph /\ m e. NN ) -> ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) e. dom S.1 ) |
| 140 | i1ff | |- ( ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) e. dom S.1 -> ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) : RR --> RR ) |
|
| 141 | 139 140 | syl | |- ( ( ph /\ m e. NN ) -> ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) : RR --> RR ) |
| 142 | 141 | ffnd | |- ( ( ph /\ m e. NN ) -> ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) Fn RR ) |
| 143 | 118 126 89 89 18 120 128 | ofval | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P ` m ) oF + ( Q ` m ) ) ` y ) = ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) ) |
| 144 | 119 127 89 89 18 121 129 | ofval | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) ` y ) = ( ( ( P ` ( m + 1 ) ) ` y ) + ( ( Q ` ( m + 1 ) ) ` y ) ) ) |
| 145 | 138 142 89 89 18 143 144 | ofrfval | |- ( ( ph /\ m e. NN ) -> ( ( ( P ` m ) oF + ( Q ` m ) ) oR <_ ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) <-> A. y e. RR ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) <_ ( ( ( P ` ( m + 1 ) ) ` y ) + ( ( Q ` ( m + 1 ) ) ` y ) ) ) ) |
| 146 | 134 145 | mpbird | |- ( ( ph /\ m e. NN ) -> ( ( P ` m ) oF + ( Q ` m ) ) oR <_ ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) ) |
| 147 | eqidd | |- ( ( ph /\ ( m + 1 ) e. NN ) -> ( P ` ( m + 1 ) ) = ( P ` ( m + 1 ) ) ) |
|
| 148 | eqidd | |- ( ( ph /\ ( m + 1 ) e. NN ) -> ( Q ` ( m + 1 ) ) = ( Q ` ( m + 1 ) ) ) |
|
| 149 | 94 95 25 25 26 147 148 | ofval | |- ( ( ph /\ ( m + 1 ) e. NN ) -> ( ( P oF oF + Q ) ` ( m + 1 ) ) = ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) ) |
| 150 | 106 149 | sylan2 | |- ( ( ph /\ m e. NN ) -> ( ( P oF oF + Q ) ` ( m + 1 ) ) = ( ( P ` ( m + 1 ) ) oF + ( Q ` ( m + 1 ) ) ) ) |
| 151 | 146 98 150 | 3brtr4d | |- ( ( ph /\ m e. NN ) -> ( ( P oF oF + Q ) ` m ) oR <_ ( ( P oF oF + Q ) ` ( m + 1 ) ) ) |
| 152 | 99 151 | jca | |- ( ( ph /\ m e. NN ) -> ( 0p oR <_ ( ( P oF oF + Q ) ` m ) /\ ( ( P oF oF + Q ) ` m ) oR <_ ( ( P oF oF + Q ) ` ( m + 1 ) ) ) ) |
| 153 | 152 | ralrimiva | |- ( ph -> A. m e. NN ( 0p oR <_ ( ( P oF oF + Q ) ` m ) /\ ( ( P oF oF + Q ) ` m ) oR <_ ( ( P oF oF + Q ) ` ( m + 1 ) ) ) ) |
| 154 | fveq2 | |- ( n = m -> ( ( P oF oF + Q ) ` n ) = ( ( P oF oF + Q ) ` m ) ) |
|
| 155 | 154 | fveq1d | |- ( n = m -> ( ( ( P oF oF + Q ) ` n ) ` y ) = ( ( ( P oF oF + Q ) ` m ) ` y ) ) |
| 156 | 155 | cbvmptv | |- ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) = ( m e. NN |-> ( ( ( P oF oF + Q ) ` m ) ` y ) ) |
| 157 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 158 | 1zzd | |- ( ( ph /\ y e. RR ) -> 1 e. ZZ ) |
|
| 159 | fveq2 | |- ( x = y -> ( ( P ` n ) ` x ) = ( ( P ` n ) ` y ) ) |
|
| 160 | 159 | mpteq2dv | |- ( x = y -> ( n e. NN |-> ( ( P ` n ) ` x ) ) = ( n e. NN |-> ( ( P ` n ) ` y ) ) ) |
| 161 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 162 | 160 161 | breq12d | |- ( x = y -> ( ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) <-> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) ) |
| 163 | 162 | rspccva | |- ( ( A. x e. RR ( n e. NN |-> ( ( P ` n ) ` x ) ) ~~> ( F ` x ) /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) |
| 164 | 9 163 | sylan | |- ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( P ` n ) ` y ) ) ~~> ( F ` y ) ) |
| 165 | 24 | mptex | |- ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) e. _V |
| 166 | 165 | a1i | |- ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) e. _V ) |
| 167 | fveq2 | |- ( x = y -> ( ( Q ` n ) ` x ) = ( ( Q ` n ) ` y ) ) |
|
| 168 | 167 | mpteq2dv | |- ( x = y -> ( n e. NN |-> ( ( Q ` n ) ` x ) ) = ( n e. NN |-> ( ( Q ` n ) ` y ) ) ) |
| 169 | fveq2 | |- ( x = y -> ( G ` x ) = ( G ` y ) ) |
|
| 170 | 168 169 | breq12d | |- ( x = y -> ( ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) <-> ( n e. NN |-> ( ( Q ` n ) ` y ) ) ~~> ( G ` y ) ) ) |
| 171 | 170 | rspccva | |- ( ( A. x e. RR ( n e. NN |-> ( ( Q ` n ) ` x ) ) ~~> ( G ` x ) /\ y e. RR ) -> ( n e. NN |-> ( ( Q ` n ) ` y ) ) ~~> ( G ` y ) ) |
| 172 | 12 171 | sylan | |- ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( Q ` n ) ` y ) ) ~~> ( G ` y ) ) |
| 173 | 31 | fveq1d | |- ( n = m -> ( ( P ` n ) ` y ) = ( ( P ` m ) ` y ) ) |
| 174 | eqid | |- ( n e. NN |-> ( ( P ` n ) ` y ) ) = ( n e. NN |-> ( ( P ` n ) ` y ) ) |
|
| 175 | fvex | |- ( ( P ` m ) ` y ) e. _V |
|
| 176 | 173 174 175 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) = ( ( P ` m ) ` y ) ) |
| 177 | 176 | adantl | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) = ( ( P ` m ) ` y ) ) |
| 178 | 102 | an32s | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( P ` m ) ` y ) e. RR ) |
| 179 | 177 178 | eqeltrd | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) e. RR ) |
| 180 | 179 | recnd | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) e. CC ) |
| 181 | 76 | fveq1d | |- ( n = m -> ( ( Q ` n ) ` y ) = ( ( Q ` m ) ` y ) ) |
| 182 | eqid | |- ( n e. NN |-> ( ( Q ` n ) ` y ) ) = ( n e. NN |-> ( ( Q ` n ) ` y ) ) |
|
| 183 | fvex | |- ( ( Q ` m ) ` y ) e. _V |
|
| 184 | 181 182 183 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) = ( ( Q ` m ) ` y ) ) |
| 185 | 184 | adantl | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) = ( ( Q ` m ) ` y ) ) |
| 186 | 105 | an32s | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( Q ` m ) ` y ) e. RR ) |
| 187 | 185 186 | eqeltrd | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) e. RR ) |
| 188 | 187 | recnd | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) e. CC ) |
| 189 | 98 | fveq1d | |- ( ( ph /\ m e. NN ) -> ( ( ( P oF oF + Q ) ` m ) ` y ) = ( ( ( P ` m ) oF + ( Q ` m ) ) ` y ) ) |
| 190 | 189 | adantr | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P oF oF + Q ) ` m ) ` y ) = ( ( ( P ` m ) oF + ( Q ` m ) ) ` y ) ) |
| 191 | 190 143 | eqtrd | |- ( ( ( ph /\ m e. NN ) /\ y e. RR ) -> ( ( ( P oF oF + Q ) ` m ) ` y ) = ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) ) |
| 192 | 191 | an32s | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( ( P oF oF + Q ) ` m ) ` y ) = ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) ) |
| 193 | eqid | |- ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) = ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) |
|
| 194 | fvex | |- ( ( ( P oF oF + Q ) ` m ) ` y ) e. _V |
|
| 195 | 155 193 194 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) ` m ) = ( ( ( P oF oF + Q ) ` m ) ` y ) ) |
| 196 | 195 | adantl | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) ` m ) = ( ( ( P oF oF + Q ) ` m ) ` y ) ) |
| 197 | 177 185 | oveq12d | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) + ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) ) = ( ( ( P ` m ) ` y ) + ( ( Q ` m ) ` y ) ) ) |
| 198 | 192 196 197 | 3eqtr4d | |- ( ( ( ph /\ y e. RR ) /\ m e. NN ) -> ( ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) ` m ) = ( ( ( n e. NN |-> ( ( P ` n ) ` y ) ) ` m ) + ( ( n e. NN |-> ( ( Q ` n ) ` y ) ) ` m ) ) ) |
| 199 | 157 158 164 166 172 180 188 198 | climadd | |- ( ( ph /\ y e. RR ) -> ( n e. NN |-> ( ( ( P oF oF + Q ) ` n ) ` y ) ) ~~> ( ( F ` y ) + ( G ` y ) ) ) |
| 200 | 156 199 | eqbrtrrid | |- ( ( ph /\ y e. RR ) -> ( m e. NN |-> ( ( ( P oF oF + Q ) ` m ) ` y ) ) ~~> ( ( F ` y ) + ( G ` y ) ) ) |
| 201 | 2 | ffnd | |- ( ph -> F Fn RR ) |
| 202 | 5 | ffnd | |- ( ph -> G Fn RR ) |
| 203 | eqidd | |- ( ( ph /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) |
|
| 204 | eqidd | |- ( ( ph /\ y e. RR ) -> ( G ` y ) = ( G ` y ) ) |
|
| 205 | 201 202 17 17 18 203 204 | ofval | |- ( ( ph /\ y e. RR ) -> ( ( F oF + G ) ` y ) = ( ( F ` y ) + ( G ` y ) ) ) |
| 206 | 200 205 | breqtrrd | |- ( ( ph /\ y e. RR ) -> ( m e. NN |-> ( ( ( P oF oF + Q ) ` m ) ` y ) ) ~~> ( ( F oF + G ) ` y ) ) |
| 207 | 206 | ralrimiva | |- ( ph -> A. y e. RR ( m e. NN |-> ( ( ( P oF oF + Q ) ` m ) ` y ) ) ~~> ( ( F oF + G ) ` y ) ) |
| 208 | 2fveq3 | |- ( n = j -> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) = ( S.1 ` ( ( P oF oF + Q ) ` j ) ) ) |
|
| 209 | 208 | cbvmptv | |- ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) = ( j e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` j ) ) ) |
| 210 | 3 6 | readdcld | |- ( ph -> ( ( S.2 ` F ) + ( S.2 ` G ) ) e. RR ) |
| 211 | 98 | fveq2d | |- ( ( ph /\ m e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` m ) ) = ( S.1 ` ( ( P ` m ) oF + ( Q ` m ) ) ) ) |
| 212 | 30 75 | itg1add | |- ( ( ph /\ m e. NN ) -> ( S.1 ` ( ( P ` m ) oF + ( Q ` m ) ) ) = ( ( S.1 ` ( P ` m ) ) + ( S.1 ` ( Q ` m ) ) ) ) |
| 213 | 211 212 | eqtrd | |- ( ( ph /\ m e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` m ) ) = ( ( S.1 ` ( P ` m ) ) + ( S.1 ` ( Q ` m ) ) ) ) |
| 214 | itg1cl | |- ( ( P ` m ) e. dom S.1 -> ( S.1 ` ( P ` m ) ) e. RR ) |
|
| 215 | 30 214 | syl | |- ( ( ph /\ m e. NN ) -> ( S.1 ` ( P ` m ) ) e. RR ) |
| 216 | itg1cl | |- ( ( Q ` m ) e. dom S.1 -> ( S.1 ` ( Q ` m ) ) e. RR ) |
|
| 217 | 75 216 | syl | |- ( ( ph /\ m e. NN ) -> ( S.1 ` ( Q ` m ) ) e. RR ) |
| 218 | 3 | adantr | |- ( ( ph /\ m e. NN ) -> ( S.2 ` F ) e. RR ) |
| 219 | 6 | adantr | |- ( ( ph /\ m e. NN ) -> ( S.2 ` G ) e. RR ) |
| 220 | 2 | adantr | |- ( ( ph /\ m e. NN ) -> F : RR --> ( 0 [,) +oo ) ) |
| 221 | icossicc | |- ( 0 [,) +oo ) C_ ( 0 [,] +oo ) |
|
| 222 | fss | |- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> F : RR --> ( 0 [,] +oo ) ) |
|
| 223 | 220 221 222 | sylancl | |- ( ( ph /\ m e. NN ) -> F : RR --> ( 0 [,] +oo ) ) |
| 224 | 1 2 7 8 9 | itg2i1fseqle | |- ( ( ph /\ m e. NN ) -> ( P ` m ) oR <_ F ) |
| 225 | itg2ub | |- ( ( F : RR --> ( 0 [,] +oo ) /\ ( P ` m ) e. dom S.1 /\ ( P ` m ) oR <_ F ) -> ( S.1 ` ( P ` m ) ) <_ ( S.2 ` F ) ) |
|
| 226 | 223 30 224 225 | syl3anc | |- ( ( ph /\ m e. NN ) -> ( S.1 ` ( P ` m ) ) <_ ( S.2 ` F ) ) |
| 227 | 5 | adantr | |- ( ( ph /\ m e. NN ) -> G : RR --> ( 0 [,) +oo ) ) |
| 228 | fss | |- ( ( G : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ ( 0 [,] +oo ) ) -> G : RR --> ( 0 [,] +oo ) ) |
|
| 229 | 227 221 228 | sylancl | |- ( ( ph /\ m e. NN ) -> G : RR --> ( 0 [,] +oo ) ) |
| 230 | 4 5 10 11 12 | itg2i1fseqle | |- ( ( ph /\ m e. NN ) -> ( Q ` m ) oR <_ G ) |
| 231 | itg2ub | |- ( ( G : RR --> ( 0 [,] +oo ) /\ ( Q ` m ) e. dom S.1 /\ ( Q ` m ) oR <_ G ) -> ( S.1 ` ( Q ` m ) ) <_ ( S.2 ` G ) ) |
|
| 232 | 229 75 230 231 | syl3anc | |- ( ( ph /\ m e. NN ) -> ( S.1 ` ( Q ` m ) ) <_ ( S.2 ` G ) ) |
| 233 | 215 217 218 219 226 232 | le2addd | |- ( ( ph /\ m e. NN ) -> ( ( S.1 ` ( P ` m ) ) + ( S.1 ` ( Q ` m ) ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
| 234 | 213 233 | eqbrtrd | |- ( ( ph /\ m e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` m ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
| 235 | 234 | ralrimiva | |- ( ph -> A. m e. NN ( S.1 ` ( ( P oF oF + Q ) ` m ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
| 236 | 2fveq3 | |- ( m = k -> ( S.1 ` ( ( P oF oF + Q ) ` m ) ) = ( S.1 ` ( ( P oF oF + Q ) ` k ) ) ) |
|
| 237 | 236 | breq1d | |- ( m = k -> ( ( S.1 ` ( ( P oF oF + Q ) ` m ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) <-> ( S.1 ` ( ( P oF oF + Q ) ` k ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) ) |
| 238 | 237 | rspccva | |- ( ( A. m e. NN ( S.1 ` ( ( P oF oF + Q ) ` m ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) /\ k e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` k ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
| 239 | 235 238 | sylan | |- ( ( ph /\ k e. NN ) -> ( S.1 ` ( ( P oF oF + Q ) ` k ) ) <_ ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
| 240 | 13 19 27 153 207 209 210 239 | itg2i1fseq2 | |- ( ph -> ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ~~> ( S.2 ` ( F oF + G ) ) ) |
| 241 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 242 | eqid | |- ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) = ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) |
|
| 243 | 1 2 7 8 9 242 3 | itg2i1fseq3 | |- ( ph -> ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ~~> ( S.2 ` F ) ) |
| 244 | 24 | mptex | |- ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) e. _V |
| 245 | 244 | a1i | |- ( ph -> ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) e. _V ) |
| 246 | eqid | |- ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) = ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) |
|
| 247 | 4 5 10 11 12 246 6 | itg2i1fseq3 | |- ( ph -> ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ~~> ( S.2 ` G ) ) |
| 248 | 2fveq3 | |- ( k = m -> ( S.1 ` ( P ` k ) ) = ( S.1 ` ( P ` m ) ) ) |
|
| 249 | fvex | |- ( S.1 ` ( P ` m ) ) e. _V |
|
| 250 | 248 242 249 | fvmpt | |- ( m e. NN -> ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) = ( S.1 ` ( P ` m ) ) ) |
| 251 | 250 | adantl | |- ( ( ph /\ m e. NN ) -> ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) = ( S.1 ` ( P ` m ) ) ) |
| 252 | 215 | recnd | |- ( ( ph /\ m e. NN ) -> ( S.1 ` ( P ` m ) ) e. CC ) |
| 253 | 251 252 | eqeltrd | |- ( ( ph /\ m e. NN ) -> ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) e. CC ) |
| 254 | 2fveq3 | |- ( k = m -> ( S.1 ` ( Q ` k ) ) = ( S.1 ` ( Q ` m ) ) ) |
|
| 255 | fvex | |- ( S.1 ` ( Q ` m ) ) e. _V |
|
| 256 | 254 246 255 | fvmpt | |- ( m e. NN -> ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) = ( S.1 ` ( Q ` m ) ) ) |
| 257 | 256 | adantl | |- ( ( ph /\ m e. NN ) -> ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) = ( S.1 ` ( Q ` m ) ) ) |
| 258 | 217 | recnd | |- ( ( ph /\ m e. NN ) -> ( S.1 ` ( Q ` m ) ) e. CC ) |
| 259 | 257 258 | eqeltrd | |- ( ( ph /\ m e. NN ) -> ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) e. CC ) |
| 260 | 2fveq3 | |- ( j = m -> ( S.1 ` ( ( P oF oF + Q ) ` j ) ) = ( S.1 ` ( ( P oF oF + Q ) ` m ) ) ) |
|
| 261 | fvex | |- ( S.1 ` ( ( P oF oF + Q ) ` m ) ) e. _V |
|
| 262 | 260 209 261 | fvmpt | |- ( m e. NN -> ( ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ` m ) = ( S.1 ` ( ( P oF oF + Q ) ` m ) ) ) |
| 263 | 262 | adantl | |- ( ( ph /\ m e. NN ) -> ( ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ` m ) = ( S.1 ` ( ( P oF oF + Q ) ` m ) ) ) |
| 264 | 251 257 | oveq12d | |- ( ( ph /\ m e. NN ) -> ( ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) + ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) ) = ( ( S.1 ` ( P ` m ) ) + ( S.1 ` ( Q ` m ) ) ) ) |
| 265 | 213 263 264 | 3eqtr4d | |- ( ( ph /\ m e. NN ) -> ( ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ` m ) = ( ( ( k e. NN |-> ( S.1 ` ( P ` k ) ) ) ` m ) + ( ( k e. NN |-> ( S.1 ` ( Q ` k ) ) ) ` m ) ) ) |
| 266 | 157 241 243 245 247 253 259 265 | climadd | |- ( ph -> ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ~~> ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
| 267 | climuni | |- ( ( ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ~~> ( S.2 ` ( F oF + G ) ) /\ ( n e. NN |-> ( S.1 ` ( ( P oF oF + Q ) ` n ) ) ) ~~> ( ( S.2 ` F ) + ( S.2 ` G ) ) ) -> ( S.2 ` ( F oF + G ) ) = ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |
|
| 268 | 240 266 267 | syl2anc | |- ( ph -> ( S.2 ` ( F oF + G ) ) = ( ( S.2 ` F ) + ( S.2 ` G ) ) ) |