This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The S.2 integral is linear. (Measurability is an essential component of this theorem; otherwise consider the characteristic function of a nonmeasurable set and its complement.) (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itg2add.f1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| itg2add.f2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| itg2add.f3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | ||
| itg2add.g1 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | ||
| itg2add.g2 | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| itg2add.g3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) | ||
| Assertion | itg2add | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itg2add.f1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | itg2add.f2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 3 | itg2add.f3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) | |
| 4 | itg2add.g1 | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) | |
| 5 | itg2add.g2 | ⊢ ( 𝜑 → 𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 6 | itg2add.g3 | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) | |
| 7 | 1 2 | mbfi1fseq | ⊢ ( 𝜑 → ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| 8 | 4 5 | mbfi1fseq | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) |
| 9 | exdistrv | ⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) | |
| 10 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → 𝐹 ∈ MblFn ) |
| 11 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 12 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ( ∫2 ‘ 𝐹 ) ∈ ℝ ) |
| 13 | 4 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → 𝐺 ∈ MblFn ) |
| 14 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → 𝐺 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 15 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
| 16 | simprl1 | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → 𝑓 : ℕ ⟶ dom ∫1 ) | |
| 17 | simprl2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 18 | simprl3 | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) | |
| 19 | simprr1 | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → 𝑔 : ℕ ⟶ dom ∫1 ) | |
| 20 | simprr2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ) | |
| 21 | simprr3 | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) | |
| 22 | 10 11 12 13 14 15 16 17 18 19 20 21 | itg2addlem | ⊢ ( ( 𝜑 ∧ ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) ) → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |
| 23 | 22 | ex | ⊢ ( 𝜑 → ( ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) |
| 24 | 23 | exlimdvv | ⊢ ( 𝜑 → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) |
| 25 | 9 24 | biimtrrid | ⊢ ( 𝜑 → ( ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑓 ‘ 𝑛 ) ∧ ( 𝑓 ‘ 𝑛 ) ∘r ≤ ( 𝑓 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑓 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ∧ ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐺 ‘ 𝑥 ) ) ) → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) ) |
| 26 | 7 8 25 | mp2and | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝐹 ∘f + 𝐺 ) ) = ( ( ∫2 ‘ 𝐹 ) + ( ∫2 ‘ 𝐺 ) ) ) |