This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that the function F on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0plef | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 2 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) → 𝐹 : ℝ ⟶ ℝ ) |
| 4 | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | |
| 5 | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 6 | 5 | baib | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 7 | 4 6 | syl | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 8 | 7 | ralbidva | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ( ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 9 | ffn | ⊢ ( 𝐹 : ℝ ⟶ ℝ → 𝐹 Fn ℝ ) | |
| 10 | ffnfv | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 Fn ℝ ∧ ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) | |
| 11 | 10 | baib | ⊢ ( 𝐹 Fn ℝ → ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
| 12 | 9 11 | syl | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) ) |
| 13 | 0cn | ⊢ 0 ∈ ℂ | |
| 14 | fnconstg | ⊢ ( 0 ∈ ℂ → ( ℂ × { 0 } ) Fn ℂ ) | |
| 15 | 13 14 | ax-mp | ⊢ ( ℂ × { 0 } ) Fn ℂ |
| 16 | df-0p | ⊢ 0𝑝 = ( ℂ × { 0 } ) | |
| 17 | 16 | fneq1i | ⊢ ( 0𝑝 Fn ℂ ↔ ( ℂ × { 0 } ) Fn ℂ ) |
| 18 | 15 17 | mpbir | ⊢ 0𝑝 Fn ℂ |
| 19 | 18 | a1i | ⊢ ( 𝐹 : ℝ ⟶ ℝ → 0𝑝 Fn ℂ ) |
| 20 | cnex | ⊢ ℂ ∈ V | |
| 21 | 20 | a1i | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ℂ ∈ V ) |
| 22 | reex | ⊢ ℝ ∈ V | |
| 23 | 22 | a1i | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ℝ ∈ V ) |
| 24 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 25 | sseqin2 | ⊢ ( ℝ ⊆ ℂ ↔ ( ℂ ∩ ℝ ) = ℝ ) | |
| 26 | 24 25 | mpbi | ⊢ ( ℂ ∩ ℝ ) = ℝ |
| 27 | 0pval | ⊢ ( 𝑥 ∈ ℂ → ( 0𝑝 ‘ 𝑥 ) = 0 ) | |
| 28 | 27 | adantl | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℂ ) → ( 0𝑝 ‘ 𝑥 ) = 0 ) |
| 29 | eqidd | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 30 | 19 9 21 23 26 28 29 | ofrfval | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 0𝑝 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 31 | 8 12 30 | 3bitr4d | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ 0𝑝 ∘r ≤ 𝐹 ) ) |
| 32 | 3 31 | biadanii | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ↔ ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ 𝐹 ) ) |