This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isercoll . (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isercoll.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isercoll.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isercoll.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑍 ) | ||
| isercoll.i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) | ||
| Assertion | isercolllem2 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) = ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isercoll.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isercoll.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isercoll.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑍 ) | |
| 4 | isercoll.i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) < ( 𝐺 ‘ ( 𝑘 + 1 ) ) ) | |
| 5 | elfznn | ⊢ ( 𝑥 ∈ ( 1 ... sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) → 𝑥 ∈ ℕ ) | |
| 6 | 5 | a1i | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝑥 ∈ ( 1 ... sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) → 𝑥 ∈ ℕ ) ) |
| 7 | cnvimass | ⊢ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ dom 𝐺 | |
| 8 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 𝐺 : ℕ ⟶ 𝑍 ) |
| 9 | 7 8 | fssdm | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ ℕ ) |
| 10 | 9 | sseld | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) → 𝑥 ∈ ℕ ) ) |
| 11 | id | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ ) | |
| 12 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 13 | 11 12 | eleqtrdi | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ( ℤ≥ ‘ 1 ) ) |
| 14 | ltso | ⊢ < Or ℝ | |
| 15 | 14 | a1i | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → < Or ℝ ) |
| 16 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝑀 ... 𝑁 ) ∈ Fin ) | |
| 17 | ffun | ⊢ ( 𝐺 : ℕ ⟶ 𝑍 → Fun 𝐺 ) | |
| 18 | funimacnv | ⊢ ( Fun 𝐺 → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ) | |
| 19 | 8 17 18 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ) |
| 20 | inss1 | ⊢ ( ( 𝑀 ... 𝑁 ) ∩ ran 𝐺 ) ⊆ ( 𝑀 ... 𝑁 ) | |
| 21 | 19 20 | eqsstrdi | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ⊆ ( 𝑀 ... 𝑁 ) ) |
| 22 | 16 21 | ssfid | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ∈ Fin ) |
| 23 | ssid | ⊢ ℕ ⊆ ℕ | |
| 24 | 1 2 3 4 | isercolllem1 | ⊢ ( ( 𝜑 ∧ ℕ ⊆ ℕ ) → ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
| 25 | 23 24 | mpan2 | ⊢ ( 𝜑 → ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
| 26 | ffn | ⊢ ( 𝐺 : ℕ ⟶ 𝑍 → 𝐺 Fn ℕ ) | |
| 27 | fnresdm | ⊢ ( 𝐺 Fn ℕ → ( 𝐺 ↾ ℕ ) = 𝐺 ) | |
| 28 | isoeq1 | ⊢ ( ( 𝐺 ↾ ℕ ) = 𝐺 → ( ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ↔ 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) ) | |
| 29 | 3 26 27 28 | 4syl | ⊢ ( 𝜑 → ( ( 𝐺 ↾ ℕ ) Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ↔ 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) ) |
| 30 | 25 29 | mpbid | ⊢ ( 𝜑 → 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
| 31 | isof1o | ⊢ ( 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) → 𝐺 : ℕ –1-1-onto→ ( 𝐺 “ ℕ ) ) | |
| 32 | f1ocnv | ⊢ ( 𝐺 : ℕ –1-1-onto→ ( 𝐺 “ ℕ ) → ◡ 𝐺 : ( 𝐺 “ ℕ ) –1-1-onto→ ℕ ) | |
| 33 | f1ofun | ⊢ ( ◡ 𝐺 : ( 𝐺 “ ℕ ) –1-1-onto→ ℕ → Fun ◡ 𝐺 ) | |
| 34 | 30 31 32 33 | 4syl | ⊢ ( 𝜑 → Fun ◡ 𝐺 ) |
| 35 | df-f1 | ⊢ ( 𝐺 : ℕ –1-1→ 𝑍 ↔ ( 𝐺 : ℕ ⟶ 𝑍 ∧ Fun ◡ 𝐺 ) ) | |
| 36 | 3 34 35 | sylanbrc | ⊢ ( 𝜑 → 𝐺 : ℕ –1-1→ 𝑍 ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 𝐺 : ℕ –1-1→ 𝑍 ) |
| 38 | nnex | ⊢ ℕ ∈ V | |
| 39 | ssexg | ⊢ ( ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ ℕ ∧ ℕ ∈ V ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ∈ V ) | |
| 40 | 9 38 39 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ∈ V ) |
| 41 | f1imaeng | ⊢ ( ( 𝐺 : ℕ –1-1→ 𝑍 ∧ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ ℕ ∧ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ∈ V ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ≈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) | |
| 42 | 37 9 40 41 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ≈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
| 43 | 42 | ensymd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ≈ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 44 | enfii | ⊢ ( ( ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ∈ Fin ∧ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ≈ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ∈ Fin ) | |
| 45 | 22 43 44 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ∈ Fin ) |
| 46 | 1nn | ⊢ 1 ∈ ℕ | |
| 47 | 46 | a1i | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 1 ∈ ℕ ) |
| 48 | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ 𝑍 ∧ 1 ∈ ℕ ) → ( 𝐺 ‘ 1 ) ∈ 𝑍 ) | |
| 49 | 3 46 48 | sylancl | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ 𝑍 ) |
| 50 | 49 1 | eleqtrdi | ⊢ ( 𝜑 → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 52 | simpr | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) | |
| 53 | elfzuzb | ⊢ ( ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝐺 ‘ 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ) | |
| 54 | 51 52 53 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... 𝑁 ) ) |
| 55 | 8 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 𝐺 Fn ℕ ) |
| 56 | elpreima | ⊢ ( 𝐺 Fn ℕ → ( 1 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ↔ ( 1 ∈ ℕ ∧ ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ) | |
| 57 | 55 56 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 1 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ↔ ( 1 ∈ ℕ ∧ ( 𝐺 ‘ 1 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
| 58 | 47 54 57 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → 1 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
| 59 | 58 | ne0d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ≠ ∅ ) |
| 60 | nnssre | ⊢ ℕ ⊆ ℝ | |
| 61 | 9 60 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ ℝ ) |
| 62 | fisupcl | ⊢ ( ( < Or ℝ ∧ ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ∈ Fin ∧ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ≠ ∅ ∧ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ ℝ ) ) → sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) | |
| 63 | 15 45 59 61 62 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
| 64 | 9 63 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ℕ ) |
| 65 | 64 | nnzd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ℤ ) |
| 66 | elfz5 | ⊢ ( ( 𝑥 ∈ ( ℤ≥ ‘ 1 ) ∧ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ℤ ) → ( 𝑥 ∈ ( 1 ... sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ↔ 𝑥 ≤ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ) | |
| 67 | 13 65 66 | syl2anr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ∈ ( 1 ... sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ↔ 𝑥 ≤ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ) |
| 68 | elpreima | ⊢ ( 𝐺 Fn ℕ → ( sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ↔ ( sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ℕ ∧ ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ∈ ( 𝑀 ... 𝑁 ) ) ) ) | |
| 69 | 55 68 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ↔ ( sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ℕ ∧ ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ∈ ( 𝑀 ... 𝑁 ) ) ) ) |
| 70 | 63 69 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ℕ ∧ ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 71 | elfzle2 | ⊢ ( ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ∈ ( 𝑀 ... 𝑁 ) → ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ≤ 𝑁 ) | |
| 72 | 70 71 | simpl2im | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ≤ 𝑁 ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ≤ 𝑁 ) |
| 74 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 75 | 1 74 | eqsstri | ⊢ 𝑍 ⊆ ℤ |
| 76 | zssre | ⊢ ℤ ⊆ ℝ | |
| 77 | 75 76 | sstri | ⊢ 𝑍 ⊆ ℝ |
| 78 | 8 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ 𝑥 ) ∈ 𝑍 ) |
| 79 | 77 78 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ 𝑥 ) ∈ ℝ ) |
| 80 | 8 64 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ∈ 𝑍 ) |
| 81 | 80 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ∈ 𝑍 ) |
| 82 | 77 81 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ∈ ℝ ) |
| 83 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) → 𝑁 ∈ ℤ ) | |
| 84 | 83 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 85 | 76 84 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 86 | letr | ⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ∧ ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ≤ 𝑁 ) → ( 𝐺 ‘ 𝑥 ) ≤ 𝑁 ) ) | |
| 87 | 79 82 85 86 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( ( ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ∧ ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ≤ 𝑁 ) → ( 𝐺 ‘ 𝑥 ) ≤ 𝑁 ) ) |
| 88 | 73 87 | mpan2d | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) → ( 𝐺 ‘ 𝑥 ) ≤ 𝑁 ) ) |
| 89 | 30 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ) |
| 90 | 60 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ℕ ⊆ ℝ ) |
| 91 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 92 | 90 91 | sstrdi | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ℕ ⊆ ℝ* ) |
| 93 | imassrn | ⊢ ( 𝐺 “ ℕ ) ⊆ ran 𝐺 | |
| 94 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝐺 : ℕ ⟶ 𝑍 ) |
| 95 | 94 | frnd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ran 𝐺 ⊆ 𝑍 ) |
| 96 | 93 95 | sstrid | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 “ ℕ ) ⊆ 𝑍 ) |
| 97 | 96 77 | sstrdi | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 “ ℕ ) ⊆ ℝ ) |
| 98 | 97 91 | sstrdi | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 “ ℕ ) ⊆ ℝ* ) |
| 99 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → 𝑥 ∈ ℕ ) | |
| 100 | 64 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ℕ ) |
| 101 | leisorel | ⊢ ( ( 𝐺 Isom < , < ( ℕ , ( 𝐺 “ ℕ ) ) ∧ ( ℕ ⊆ ℝ* ∧ ( 𝐺 “ ℕ ) ⊆ ℝ* ) ∧ ( 𝑥 ∈ ℕ ∧ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ℕ ) ) → ( 𝑥 ≤ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ↔ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ) ) | |
| 102 | 89 92 98 99 100 101 | syl122anc | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ≤ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ↔ ( 𝐺 ‘ 𝑥 ) ≤ ( 𝐺 ‘ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ) ) |
| 103 | 78 1 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝐺 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 104 | elfz5 | ⊢ ( ( ( 𝐺 ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐺 ‘ 𝑥 ) ≤ 𝑁 ) ) | |
| 105 | 103 84 104 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐺 ‘ 𝑥 ) ≤ 𝑁 ) ) |
| 106 | 88 102 105 | 3imtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ≤ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) → ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 107 | elpreima | ⊢ ( 𝐺 Fn ℕ → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝑥 ∈ ℕ ∧ ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) ) ) | |
| 108 | 107 | baibd | ⊢ ( ( 𝐺 Fn ℕ ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 109 | 55 108 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ↔ ( 𝐺 ‘ 𝑥 ) ∈ ( 𝑀 ... 𝑁 ) ) ) |
| 110 | 106 109 | sylibrd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ≤ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) → 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 111 | fimaxre2 | ⊢ ( ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ ℝ ∧ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) 𝑦 ≤ 𝑥 ) | |
| 112 | 61 45 111 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) 𝑦 ≤ 𝑥 ) |
| 113 | suprub | ⊢ ( ( ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ ℝ ∧ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) 𝑦 ≤ 𝑥 ) ∧ 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) → 𝑥 ≤ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) | |
| 114 | 113 | ex | ⊢ ( ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ⊆ ℝ ∧ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) 𝑦 ≤ 𝑥 ) → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) → 𝑥 ≤ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ) |
| 115 | 61 59 112 114 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) → 𝑥 ≤ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ) |
| 116 | 115 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) → 𝑥 ≤ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ) |
| 117 | 110 116 | impbid | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ≤ sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ↔ 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 118 | 67 117 | bitrd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) ∧ 𝑥 ∈ ℕ ) → ( 𝑥 ∈ ( 1 ... sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ↔ 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 119 | 118 | ex | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝑥 ∈ ℕ → ( 𝑥 ∈ ( 1 ... sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ↔ 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) |
| 120 | 6 10 119 | pm5.21ndd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 𝑥 ∈ ( 1 ... sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ↔ 𝑥 ∈ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 121 | 120 | eqrdv | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 1 ... sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) = ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |
| 122 | 121 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ♯ ‘ ( 1 ... sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ) = ( ♯ ‘ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) |
| 123 | 64 | nnnn0d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ℕ0 ) |
| 124 | hashfz1 | ⊢ ( sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ∈ ℕ0 → ( ♯ ‘ ( 1 ... sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ) = sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) | |
| 125 | 123 124 | syl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ♯ ‘ ( 1 ... sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) ) = sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) |
| 126 | hashen | ⊢ ( ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ∈ Fin ∧ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ∈ Fin ) → ( ( ♯ ‘ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ↔ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ≈ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) | |
| 127 | 45 22 126 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ( ♯ ‘ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ↔ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ≈ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) |
| 128 | 43 127 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( ♯ ‘ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) |
| 129 | 122 125 128 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) = ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) |
| 130 | 129 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 1 ... sup ( ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) , ℝ , < ) ) = ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) ) |
| 131 | 130 121 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝐺 ‘ 1 ) ) ) → ( 1 ... ( ♯ ‘ ( 𝐺 “ ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) ) ) = ( ◡ 𝐺 “ ( 𝑀 ... 𝑁 ) ) ) |