This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isercoll . (Contributed by Mario Carneiro, 6-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isercoll.z | |- Z = ( ZZ>= ` M ) |
|
| isercoll.m | |- ( ph -> M e. ZZ ) |
||
| isercoll.g | |- ( ph -> G : NN --> Z ) |
||
| isercoll.i | |- ( ( ph /\ k e. NN ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) |
||
| Assertion | isercolllem2 | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) = ( `' G " ( M ... N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isercoll.z | |- Z = ( ZZ>= ` M ) |
|
| 2 | isercoll.m | |- ( ph -> M e. ZZ ) |
|
| 3 | isercoll.g | |- ( ph -> G : NN --> Z ) |
|
| 4 | isercoll.i | |- ( ( ph /\ k e. NN ) -> ( G ` k ) < ( G ` ( k + 1 ) ) ) |
|
| 5 | elfznn | |- ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) -> x e. NN ) |
|
| 6 | 5 | a1i | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) -> x e. NN ) ) |
| 7 | cnvimass | |- ( `' G " ( M ... N ) ) C_ dom G |
|
| 8 | 3 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> G : NN --> Z ) |
| 9 | 7 8 | fssdm | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) C_ NN ) |
| 10 | 9 | sseld | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( x e. ( `' G " ( M ... N ) ) -> x e. NN ) ) |
| 11 | id | |- ( x e. NN -> x e. NN ) |
|
| 12 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 13 | 11 12 | eleqtrdi | |- ( x e. NN -> x e. ( ZZ>= ` 1 ) ) |
| 14 | ltso | |- < Or RR |
|
| 15 | 14 | a1i | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> < Or RR ) |
| 16 | fzfid | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( M ... N ) e. Fin ) |
|
| 17 | ffun | |- ( G : NN --> Z -> Fun G ) |
|
| 18 | funimacnv | |- ( Fun G -> ( G " ( `' G " ( M ... N ) ) ) = ( ( M ... N ) i^i ran G ) ) |
|
| 19 | 8 17 18 | 3syl | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) = ( ( M ... N ) i^i ran G ) ) |
| 20 | inss1 | |- ( ( M ... N ) i^i ran G ) C_ ( M ... N ) |
|
| 21 | 19 20 | eqsstrdi | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) C_ ( M ... N ) ) |
| 22 | 16 21 | ssfid | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) e. Fin ) |
| 23 | ssid | |- NN C_ NN |
|
| 24 | 1 2 3 4 | isercolllem1 | |- ( ( ph /\ NN C_ NN ) -> ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) ) |
| 25 | 23 24 | mpan2 | |- ( ph -> ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) ) |
| 26 | ffn | |- ( G : NN --> Z -> G Fn NN ) |
|
| 27 | fnresdm | |- ( G Fn NN -> ( G |` NN ) = G ) |
|
| 28 | isoeq1 | |- ( ( G |` NN ) = G -> ( ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) <-> G Isom < , < ( NN , ( G " NN ) ) ) ) |
|
| 29 | 3 26 27 28 | 4syl | |- ( ph -> ( ( G |` NN ) Isom < , < ( NN , ( G " NN ) ) <-> G Isom < , < ( NN , ( G " NN ) ) ) ) |
| 30 | 25 29 | mpbid | |- ( ph -> G Isom < , < ( NN , ( G " NN ) ) ) |
| 31 | isof1o | |- ( G Isom < , < ( NN , ( G " NN ) ) -> G : NN -1-1-onto-> ( G " NN ) ) |
|
| 32 | f1ocnv | |- ( G : NN -1-1-onto-> ( G " NN ) -> `' G : ( G " NN ) -1-1-onto-> NN ) |
|
| 33 | f1ofun | |- ( `' G : ( G " NN ) -1-1-onto-> NN -> Fun `' G ) |
|
| 34 | 30 31 32 33 | 4syl | |- ( ph -> Fun `' G ) |
| 35 | df-f1 | |- ( G : NN -1-1-> Z <-> ( G : NN --> Z /\ Fun `' G ) ) |
|
| 36 | 3 34 35 | sylanbrc | |- ( ph -> G : NN -1-1-> Z ) |
| 37 | 36 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> G : NN -1-1-> Z ) |
| 38 | nnex | |- NN e. _V |
|
| 39 | ssexg | |- ( ( ( `' G " ( M ... N ) ) C_ NN /\ NN e. _V ) -> ( `' G " ( M ... N ) ) e. _V ) |
|
| 40 | 9 38 39 | sylancl | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) e. _V ) |
| 41 | f1imaeng | |- ( ( G : NN -1-1-> Z /\ ( `' G " ( M ... N ) ) C_ NN /\ ( `' G " ( M ... N ) ) e. _V ) -> ( G " ( `' G " ( M ... N ) ) ) ~~ ( `' G " ( M ... N ) ) ) |
|
| 42 | 37 9 40 41 | syl3anc | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G " ( `' G " ( M ... N ) ) ) ~~ ( `' G " ( M ... N ) ) ) |
| 43 | 42 | ensymd | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) ~~ ( G " ( `' G " ( M ... N ) ) ) ) |
| 44 | enfii | |- ( ( ( G " ( `' G " ( M ... N ) ) ) e. Fin /\ ( `' G " ( M ... N ) ) ~~ ( G " ( `' G " ( M ... N ) ) ) ) -> ( `' G " ( M ... N ) ) e. Fin ) |
|
| 45 | 22 43 44 | syl2anc | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) e. Fin ) |
| 46 | 1nn | |- 1 e. NN |
|
| 47 | 46 | a1i | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> 1 e. NN ) |
| 48 | ffvelcdm | |- ( ( G : NN --> Z /\ 1 e. NN ) -> ( G ` 1 ) e. Z ) |
|
| 49 | 3 46 48 | sylancl | |- ( ph -> ( G ` 1 ) e. Z ) |
| 50 | 49 1 | eleqtrdi | |- ( ph -> ( G ` 1 ) e. ( ZZ>= ` M ) ) |
| 51 | 50 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G ` 1 ) e. ( ZZ>= ` M ) ) |
| 52 | simpr | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> N e. ( ZZ>= ` ( G ` 1 ) ) ) |
|
| 53 | elfzuzb | |- ( ( G ` 1 ) e. ( M ... N ) <-> ( ( G ` 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) ) |
|
| 54 | 51 52 53 | sylanbrc | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G ` 1 ) e. ( M ... N ) ) |
| 55 | 8 | ffnd | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> G Fn NN ) |
| 56 | elpreima | |- ( G Fn NN -> ( 1 e. ( `' G " ( M ... N ) ) <-> ( 1 e. NN /\ ( G ` 1 ) e. ( M ... N ) ) ) ) |
|
| 57 | 55 56 | syl | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 e. ( `' G " ( M ... N ) ) <-> ( 1 e. NN /\ ( G ` 1 ) e. ( M ... N ) ) ) ) |
| 58 | 47 54 57 | mpbir2and | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> 1 e. ( `' G " ( M ... N ) ) ) |
| 59 | 58 | ne0d | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) =/= (/) ) |
| 60 | nnssre | |- NN C_ RR |
|
| 61 | 9 60 | sstrdi | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( `' G " ( M ... N ) ) C_ RR ) |
| 62 | fisupcl | |- ( ( < Or RR /\ ( ( `' G " ( M ... N ) ) e. Fin /\ ( `' G " ( M ... N ) ) =/= (/) /\ ( `' G " ( M ... N ) ) C_ RR ) ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) e. ( `' G " ( M ... N ) ) ) |
|
| 63 | 15 45 59 61 62 | syl13anc | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) e. ( `' G " ( M ... N ) ) ) |
| 64 | 9 63 | sseldd | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN ) |
| 65 | 64 | nnzd | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) e. ZZ ) |
| 66 | elfz5 | |- ( ( x e. ( ZZ>= ` 1 ) /\ sup ( ( `' G " ( M ... N ) ) , RR , < ) e. ZZ ) -> ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <-> x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) |
|
| 67 | 13 65 66 | syl2anr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <-> x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) |
| 68 | elpreima | |- ( G Fn NN -> ( sup ( ( `' G " ( M ... N ) ) , RR , < ) e. ( `' G " ( M ... N ) ) <-> ( sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN /\ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. ( M ... N ) ) ) ) |
|
| 69 | 55 68 | syl | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( sup ( ( `' G " ( M ... N ) ) , RR , < ) e. ( `' G " ( M ... N ) ) <-> ( sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN /\ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. ( M ... N ) ) ) ) |
| 70 | 63 69 | mpbid | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN /\ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. ( M ... N ) ) ) |
| 71 | elfzle2 | |- ( ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. ( M ... N ) -> ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <_ N ) |
|
| 72 | 70 71 | simpl2im | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <_ N ) |
| 73 | 72 | adantr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <_ N ) |
| 74 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 75 | 1 74 | eqsstri | |- Z C_ ZZ |
| 76 | zssre | |- ZZ C_ RR |
|
| 77 | 75 76 | sstri | |- Z C_ RR |
| 78 | 8 | ffvelcdmda | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G ` x ) e. Z ) |
| 79 | 77 78 | sselid | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G ` x ) e. RR ) |
| 80 | 8 64 | ffvelcdmd | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. Z ) |
| 81 | 80 | adantr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. Z ) |
| 82 | 77 81 | sselid | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. RR ) |
| 83 | eluzelz | |- ( N e. ( ZZ>= ` ( G ` 1 ) ) -> N e. ZZ ) |
|
| 84 | 83 | ad2antlr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> N e. ZZ ) |
| 85 | 76 84 | sselid | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> N e. RR ) |
| 86 | letr | |- ( ( ( G ` x ) e. RR /\ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) e. RR /\ N e. RR ) -> ( ( ( G ` x ) <_ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) /\ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <_ N ) -> ( G ` x ) <_ N ) ) |
|
| 87 | 79 82 85 86 | syl3anc | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( ( ( G ` x ) <_ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) /\ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <_ N ) -> ( G ` x ) <_ N ) ) |
| 88 | 73 87 | mpan2d | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( ( G ` x ) <_ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) -> ( G ` x ) <_ N ) ) |
| 89 | 30 | ad2antrr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> G Isom < , < ( NN , ( G " NN ) ) ) |
| 90 | 60 | a1i | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> NN C_ RR ) |
| 91 | ressxr | |- RR C_ RR* |
|
| 92 | 90 91 | sstrdi | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> NN C_ RR* ) |
| 93 | imassrn | |- ( G " NN ) C_ ran G |
|
| 94 | 3 | ad2antrr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> G : NN --> Z ) |
| 95 | 94 | frnd | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ran G C_ Z ) |
| 96 | 93 95 | sstrid | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G " NN ) C_ Z ) |
| 97 | 96 77 | sstrdi | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G " NN ) C_ RR ) |
| 98 | 97 91 | sstrdi | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G " NN ) C_ RR* ) |
| 99 | simpr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> x e. NN ) |
|
| 100 | 64 | adantr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN ) |
| 101 | leisorel | |- ( ( G Isom < , < ( NN , ( G " NN ) ) /\ ( NN C_ RR* /\ ( G " NN ) C_ RR* ) /\ ( x e. NN /\ sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN ) ) -> ( x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) <-> ( G ` x ) <_ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) ) |
|
| 102 | 89 92 98 99 100 101 | syl122anc | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) <-> ( G ` x ) <_ ( G ` sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) ) |
| 103 | 78 1 | eleqtrdi | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( G ` x ) e. ( ZZ>= ` M ) ) |
| 104 | elfz5 | |- ( ( ( G ` x ) e. ( ZZ>= ` M ) /\ N e. ZZ ) -> ( ( G ` x ) e. ( M ... N ) <-> ( G ` x ) <_ N ) ) |
|
| 105 | 103 84 104 | syl2anc | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( ( G ` x ) e. ( M ... N ) <-> ( G ` x ) <_ N ) ) |
| 106 | 88 102 105 | 3imtr4d | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) -> ( G ` x ) e. ( M ... N ) ) ) |
| 107 | elpreima | |- ( G Fn NN -> ( x e. ( `' G " ( M ... N ) ) <-> ( x e. NN /\ ( G ` x ) e. ( M ... N ) ) ) ) |
|
| 108 | 107 | baibd | |- ( ( G Fn NN /\ x e. NN ) -> ( x e. ( `' G " ( M ... N ) ) <-> ( G ` x ) e. ( M ... N ) ) ) |
| 109 | 55 108 | sylan | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x e. ( `' G " ( M ... N ) ) <-> ( G ` x ) e. ( M ... N ) ) ) |
| 110 | 106 109 | sylibrd | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) -> x e. ( `' G " ( M ... N ) ) ) ) |
| 111 | fimaxre2 | |- ( ( ( `' G " ( M ... N ) ) C_ RR /\ ( `' G " ( M ... N ) ) e. Fin ) -> E. x e. RR A. y e. ( `' G " ( M ... N ) ) y <_ x ) |
|
| 112 | 61 45 111 | syl2anc | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> E. x e. RR A. y e. ( `' G " ( M ... N ) ) y <_ x ) |
| 113 | suprub | |- ( ( ( ( `' G " ( M ... N ) ) C_ RR /\ ( `' G " ( M ... N ) ) =/= (/) /\ E. x e. RR A. y e. ( `' G " ( M ... N ) ) y <_ x ) /\ x e. ( `' G " ( M ... N ) ) ) -> x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) ) |
|
| 114 | 113 | ex | |- ( ( ( `' G " ( M ... N ) ) C_ RR /\ ( `' G " ( M ... N ) ) =/= (/) /\ E. x e. RR A. y e. ( `' G " ( M ... N ) ) y <_ x ) -> ( x e. ( `' G " ( M ... N ) ) -> x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) |
| 115 | 61 59 112 114 | syl3anc | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( x e. ( `' G " ( M ... N ) ) -> x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) |
| 116 | 115 | adantr | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x e. ( `' G " ( M ... N ) ) -> x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) |
| 117 | 110 116 | impbid | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x <_ sup ( ( `' G " ( M ... N ) ) , RR , < ) <-> x e. ( `' G " ( M ... N ) ) ) ) |
| 118 | 67 117 | bitrd | |- ( ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) /\ x e. NN ) -> ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <-> x e. ( `' G " ( M ... N ) ) ) ) |
| 119 | 118 | ex | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( x e. NN -> ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <-> x e. ( `' G " ( M ... N ) ) ) ) ) |
| 120 | 6 10 119 | pm5.21ndd | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( x e. ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) <-> x e. ( `' G " ( M ... N ) ) ) ) |
| 121 | 120 | eqrdv | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) = ( `' G " ( M ... N ) ) ) |
| 122 | 121 | fveq2d | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( # ` ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) = ( # ` ( `' G " ( M ... N ) ) ) ) |
| 123 | 64 | nnnn0d | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN0 ) |
| 124 | hashfz1 | |- ( sup ( ( `' G " ( M ... N ) ) , RR , < ) e. NN0 -> ( # ` ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) = sup ( ( `' G " ( M ... N ) ) , RR , < ) ) |
|
| 125 | 123 124 | syl | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( # ` ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) ) = sup ( ( `' G " ( M ... N ) ) , RR , < ) ) |
| 126 | hashen | |- ( ( ( `' G " ( M ... N ) ) e. Fin /\ ( G " ( `' G " ( M ... N ) ) ) e. Fin ) -> ( ( # ` ( `' G " ( M ... N ) ) ) = ( # ` ( G " ( `' G " ( M ... N ) ) ) ) <-> ( `' G " ( M ... N ) ) ~~ ( G " ( `' G " ( M ... N ) ) ) ) ) |
|
| 127 | 45 22 126 | syl2anc | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( ( # ` ( `' G " ( M ... N ) ) ) = ( # ` ( G " ( `' G " ( M ... N ) ) ) ) <-> ( `' G " ( M ... N ) ) ~~ ( G " ( `' G " ( M ... N ) ) ) ) ) |
| 128 | 43 127 | mpbird | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( # ` ( `' G " ( M ... N ) ) ) = ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) |
| 129 | 122 125 128 | 3eqtr3d | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> sup ( ( `' G " ( M ... N ) ) , RR , < ) = ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) |
| 130 | 129 | oveq2d | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 ... sup ( ( `' G " ( M ... N ) ) , RR , < ) ) = ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) ) |
| 131 | 130 121 | eqtr3d | |- ( ( ph /\ N e. ( ZZ>= ` ( G ` 1 ) ) ) -> ( 1 ... ( # ` ( G " ( `' G " ( M ... N ) ) ) ) ) = ( `' G " ( M ... N ) ) ) |