This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ( R1A ) for A a strongly inaccessible cardinal is a Tarski class. (Contributed by Mario Carneiro, 8-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inatsk | |- ( A e. Inacc -> ( R1 ` A ) e. Tarski ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inawina | |- ( A e. Inacc -> A e. InaccW ) |
|
| 2 | winaon | |- ( A e. InaccW -> A e. On ) |
|
| 3 | winalim | |- ( A e. InaccW -> Lim A ) |
|
| 4 | r1lim | |- ( ( A e. On /\ Lim A ) -> ( R1 ` A ) = U_ y e. A ( R1 ` y ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( A e. InaccW -> ( R1 ` A ) = U_ y e. A ( R1 ` y ) ) |
| 6 | 5 | eleq2d | |- ( A e. InaccW -> ( x e. ( R1 ` A ) <-> x e. U_ y e. A ( R1 ` y ) ) ) |
| 7 | eliun | |- ( x e. U_ y e. A ( R1 ` y ) <-> E. y e. A x e. ( R1 ` y ) ) |
|
| 8 | 6 7 | bitrdi | |- ( A e. InaccW -> ( x e. ( R1 ` A ) <-> E. y e. A x e. ( R1 ` y ) ) ) |
| 9 | onelon | |- ( ( A e. On /\ y e. A ) -> y e. On ) |
|
| 10 | 2 9 | sylan | |- ( ( A e. InaccW /\ y e. A ) -> y e. On ) |
| 11 | r1pw | |- ( y e. On -> ( x e. ( R1 ` y ) <-> ~P x e. ( R1 ` suc y ) ) ) |
|
| 12 | 10 11 | syl | |- ( ( A e. InaccW /\ y e. A ) -> ( x e. ( R1 ` y ) <-> ~P x e. ( R1 ` suc y ) ) ) |
| 13 | limsuc | |- ( Lim A -> ( y e. A <-> suc y e. A ) ) |
|
| 14 | 3 13 | syl | |- ( A e. InaccW -> ( y e. A <-> suc y e. A ) ) |
| 15 | r1ord2 | |- ( A e. On -> ( suc y e. A -> ( R1 ` suc y ) C_ ( R1 ` A ) ) ) |
|
| 16 | 2 15 | syl | |- ( A e. InaccW -> ( suc y e. A -> ( R1 ` suc y ) C_ ( R1 ` A ) ) ) |
| 17 | 14 16 | sylbid | |- ( A e. InaccW -> ( y e. A -> ( R1 ` suc y ) C_ ( R1 ` A ) ) ) |
| 18 | 17 | imp | |- ( ( A e. InaccW /\ y e. A ) -> ( R1 ` suc y ) C_ ( R1 ` A ) ) |
| 19 | 18 | sseld | |- ( ( A e. InaccW /\ y e. A ) -> ( ~P x e. ( R1 ` suc y ) -> ~P x e. ( R1 ` A ) ) ) |
| 20 | 12 19 | sylbid | |- ( ( A e. InaccW /\ y e. A ) -> ( x e. ( R1 ` y ) -> ~P x e. ( R1 ` A ) ) ) |
| 21 | 20 | rexlimdva | |- ( A e. InaccW -> ( E. y e. A x e. ( R1 ` y ) -> ~P x e. ( R1 ` A ) ) ) |
| 22 | 8 21 | sylbid | |- ( A e. InaccW -> ( x e. ( R1 ` A ) -> ~P x e. ( R1 ` A ) ) ) |
| 23 | 1 22 | syl | |- ( A e. Inacc -> ( x e. ( R1 ` A ) -> ~P x e. ( R1 ` A ) ) ) |
| 24 | 23 | imp | |- ( ( A e. Inacc /\ x e. ( R1 ` A ) ) -> ~P x e. ( R1 ` A ) ) |
| 25 | elssuni | |- ( ~P x e. ( R1 ` A ) -> ~P x C_ U. ( R1 ` A ) ) |
|
| 26 | r1tr2 | |- U. ( R1 ` A ) C_ ( R1 ` A ) |
|
| 27 | 25 26 | sstrdi | |- ( ~P x e. ( R1 ` A ) -> ~P x C_ ( R1 ` A ) ) |
| 28 | 24 27 | jccil | |- ( ( A e. Inacc /\ x e. ( R1 ` A ) ) -> ( ~P x C_ ( R1 ` A ) /\ ~P x e. ( R1 ` A ) ) ) |
| 29 | 28 | ralrimiva | |- ( A e. Inacc -> A. x e. ( R1 ` A ) ( ~P x C_ ( R1 ` A ) /\ ~P x e. ( R1 ` A ) ) ) |
| 30 | 1 2 | syl | |- ( A e. Inacc -> A e. On ) |
| 31 | r1suc | |- ( A e. On -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |
|
| 32 | 31 | eleq2d | |- ( A e. On -> ( x e. ( R1 ` suc A ) <-> x e. ~P ( R1 ` A ) ) ) |
| 33 | 30 32 | syl | |- ( A e. Inacc -> ( x e. ( R1 ` suc A ) <-> x e. ~P ( R1 ` A ) ) ) |
| 34 | rankr1ai | |- ( x e. ( R1 ` suc A ) -> ( rank ` x ) e. suc A ) |
|
| 35 | 33 34 | biimtrrdi | |- ( A e. Inacc -> ( x e. ~P ( R1 ` A ) -> ( rank ` x ) e. suc A ) ) |
| 36 | 35 | imp | |- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( rank ` x ) e. suc A ) |
| 37 | fvex | |- ( rank ` x ) e. _V |
|
| 38 | 37 | elsuc | |- ( ( rank ` x ) e. suc A <-> ( ( rank ` x ) e. A \/ ( rank ` x ) = A ) ) |
| 39 | 36 38 | sylib | |- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( ( rank ` x ) e. A \/ ( rank ` x ) = A ) ) |
| 40 | 39 | orcomd | |- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( ( rank ` x ) = A \/ ( rank ` x ) e. A ) ) |
| 41 | fvex | |- ( R1 ` A ) e. _V |
|
| 42 | elpwi | |- ( x e. ~P ( R1 ` A ) -> x C_ ( R1 ` A ) ) |
|
| 43 | 42 | ad2antlr | |- ( ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) /\ ( rank ` x ) = A ) -> x C_ ( R1 ` A ) ) |
| 44 | ssdomg | |- ( ( R1 ` A ) e. _V -> ( x C_ ( R1 ` A ) -> x ~<_ ( R1 ` A ) ) ) |
|
| 45 | 41 43 44 | mpsyl | |- ( ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) /\ ( rank ` x ) = A ) -> x ~<_ ( R1 ` A ) ) |
| 46 | rankcf | |- -. x ~< ( cf ` ( rank ` x ) ) |
|
| 47 | fveq2 | |- ( ( rank ` x ) = A -> ( cf ` ( rank ` x ) ) = ( cf ` A ) ) |
|
| 48 | elina | |- ( A e. Inacc <-> ( A =/= (/) /\ ( cf ` A ) = A /\ A. x e. A ~P x ~< A ) ) |
|
| 49 | 48 | simp2bi | |- ( A e. Inacc -> ( cf ` A ) = A ) |
| 50 | 47 49 | sylan9eqr | |- ( ( A e. Inacc /\ ( rank ` x ) = A ) -> ( cf ` ( rank ` x ) ) = A ) |
| 51 | 50 | breq2d | |- ( ( A e. Inacc /\ ( rank ` x ) = A ) -> ( x ~< ( cf ` ( rank ` x ) ) <-> x ~< A ) ) |
| 52 | 46 51 | mtbii | |- ( ( A e. Inacc /\ ( rank ` x ) = A ) -> -. x ~< A ) |
| 53 | inar1 | |- ( A e. Inacc -> ( R1 ` A ) ~~ A ) |
|
| 54 | sdomentr | |- ( ( x ~< ( R1 ` A ) /\ ( R1 ` A ) ~~ A ) -> x ~< A ) |
|
| 55 | 54 | expcom | |- ( ( R1 ` A ) ~~ A -> ( x ~< ( R1 ` A ) -> x ~< A ) ) |
| 56 | 53 55 | syl | |- ( A e. Inacc -> ( x ~< ( R1 ` A ) -> x ~< A ) ) |
| 57 | 56 | adantr | |- ( ( A e. Inacc /\ ( rank ` x ) = A ) -> ( x ~< ( R1 ` A ) -> x ~< A ) ) |
| 58 | 52 57 | mtod | |- ( ( A e. Inacc /\ ( rank ` x ) = A ) -> -. x ~< ( R1 ` A ) ) |
| 59 | 58 | adantlr | |- ( ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) /\ ( rank ` x ) = A ) -> -. x ~< ( R1 ` A ) ) |
| 60 | bren2 | |- ( x ~~ ( R1 ` A ) <-> ( x ~<_ ( R1 ` A ) /\ -. x ~< ( R1 ` A ) ) ) |
|
| 61 | 45 59 60 | sylanbrc | |- ( ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) /\ ( rank ` x ) = A ) -> x ~~ ( R1 ` A ) ) |
| 62 | 61 | ex | |- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( ( rank ` x ) = A -> x ~~ ( R1 ` A ) ) ) |
| 63 | r1elwf | |- ( x e. ( R1 ` suc A ) -> x e. U. ( R1 " On ) ) |
|
| 64 | 33 63 | biimtrrdi | |- ( A e. Inacc -> ( x e. ~P ( R1 ` A ) -> x e. U. ( R1 " On ) ) ) |
| 65 | 64 | imp | |- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> x e. U. ( R1 " On ) ) |
| 66 | r1fnon | |- R1 Fn On |
|
| 67 | 66 | fndmi | |- dom R1 = On |
| 68 | 30 67 | eleqtrrdi | |- ( A e. Inacc -> A e. dom R1 ) |
| 69 | 68 | adantr | |- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> A e. dom R1 ) |
| 70 | rankr1ag | |- ( ( x e. U. ( R1 " On ) /\ A e. dom R1 ) -> ( x e. ( R1 ` A ) <-> ( rank ` x ) e. A ) ) |
|
| 71 | 65 69 70 | syl2anc | |- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( x e. ( R1 ` A ) <-> ( rank ` x ) e. A ) ) |
| 72 | 71 | biimprd | |- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( ( rank ` x ) e. A -> x e. ( R1 ` A ) ) ) |
| 73 | 62 72 | orim12d | |- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( ( ( rank ` x ) = A \/ ( rank ` x ) e. A ) -> ( x ~~ ( R1 ` A ) \/ x e. ( R1 ` A ) ) ) ) |
| 74 | 40 73 | mpd | |- ( ( A e. Inacc /\ x e. ~P ( R1 ` A ) ) -> ( x ~~ ( R1 ` A ) \/ x e. ( R1 ` A ) ) ) |
| 75 | 74 | ralrimiva | |- ( A e. Inacc -> A. x e. ~P ( R1 ` A ) ( x ~~ ( R1 ` A ) \/ x e. ( R1 ` A ) ) ) |
| 76 | eltsk2g | |- ( ( R1 ` A ) e. _V -> ( ( R1 ` A ) e. Tarski <-> ( A. x e. ( R1 ` A ) ( ~P x C_ ( R1 ` A ) /\ ~P x e. ( R1 ` A ) ) /\ A. x e. ~P ( R1 ` A ) ( x ~~ ( R1 ` A ) \/ x e. ( R1 ` A ) ) ) ) ) |
|
| 77 | 41 76 | ax-mp | |- ( ( R1 ` A ) e. Tarski <-> ( A. x e. ( R1 ` A ) ( ~P x C_ ( R1 ` A ) /\ ~P x e. ( R1 ` A ) ) /\ A. x e. ~P ( R1 ` A ) ( x ~~ ( R1 ` A ) \/ x e. ( R1 ` A ) ) ) ) |
| 78 | 29 75 77 | sylanbrc | |- ( A e. Inacc -> ( R1 ` A ) e. Tarski ) |