This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A stronger property of R1 than rankpw . The latter merely proves that R1 of the successor is a power set, but here we prove that if A is in the cumulative hierarchy, then ~P A is in the cumulative hierarchy of the successor. (Contributed by Raph Levien, 29-May-2004) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1pw | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankpwi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( rank ‘ 𝒫 𝐴 ) = suc ( rank ‘ 𝐴 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( ( rank ‘ 𝒫 𝐴 ) ∈ suc 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
| 3 | eloni | ⊢ ( 𝐵 ∈ On → Ord 𝐵 ) | |
| 4 | ordsucelsuc | ⊢ ( Ord 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐵 ∈ On → ( ( rank ‘ 𝐴 ) ∈ 𝐵 ↔ suc ( rank ‘ 𝐴 ) ∈ suc 𝐵 ) ) |
| 6 | 5 | bicomd | ⊢ ( 𝐵 ∈ On → ( suc ( rank ‘ 𝐴 ) ∈ suc 𝐵 ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 7 | 2 6 | sylan9bb | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ On ) → ( ( rank ‘ 𝒫 𝐴 ) ∈ suc 𝐵 ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 8 | pwwf | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ↔ 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 9 | 8 | biimpi | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 10 | onsuc | ⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ On ) | |
| 11 | r1fnon | ⊢ 𝑅1 Fn On | |
| 12 | 11 | fndmi | ⊢ dom 𝑅1 = On |
| 13 | 10 12 | eleqtrrdi | ⊢ ( 𝐵 ∈ On → suc 𝐵 ∈ dom 𝑅1 ) |
| 14 | rankr1ag | ⊢ ( ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ suc 𝐵 ∈ dom 𝑅1 ) → ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝒫 𝐴 ) ∈ suc 𝐵 ) ) | |
| 15 | 9 13 14 | syl2an | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ On ) → ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ↔ ( rank ‘ 𝒫 𝐴 ) ∈ suc 𝐵 ) ) |
| 16 | 12 | eleq2i | ⊢ ( 𝐵 ∈ dom 𝑅1 ↔ 𝐵 ∈ On ) |
| 17 | rankr1ag | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) | |
| 18 | 16 17 | sylan2br | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| 19 | 7 15 18 | 3bitr4rd | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ On ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
| 20 | 19 | ex | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |
| 21 | r1elwf | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 22 | r1elwf | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) | |
| 23 | r1elssi | ⊢ ( 𝒫 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝒫 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) | |
| 24 | 22 23 | syl | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → 𝒫 𝐴 ⊆ ∪ ( 𝑅1 “ On ) ) |
| 25 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 26 | pwexr | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → 𝐴 ∈ V ) | |
| 27 | elpwg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 28 | 26 27 | syl | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → ( 𝐴 ∈ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
| 29 | 25 28 | mpbiri | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → 𝐴 ∈ 𝒫 𝐴 ) |
| 30 | 24 29 | sseldd | ⊢ ( 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) → 𝐴 ∈ ∪ ( 𝑅1 “ On ) ) |
| 31 | 21 30 | pm5.21ni | ⊢ ( ¬ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |
| 32 | 31 | a1d | ⊢ ( ¬ 𝐴 ∈ ∪ ( 𝑅1 “ On ) → ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) ) |
| 33 | 20 32 | pm2.61i | ⊢ ( 𝐵 ∈ On → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ 𝒫 𝐴 ∈ ( 𝑅1 ‘ suc 𝐵 ) ) ) |