This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010) (Revised by Mario Carneiro, 20-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eltsk2g | ⊢ ( 𝑇 ∈ 𝑉 → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltskg | ⊢ ( 𝑇 ∈ 𝑉 → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) ) | |
| 2 | nfra1 | ⊢ Ⅎ 𝑧 ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 | |
| 3 | pweq | ⊢ ( 𝑧 = 𝑤 → 𝒫 𝑧 = 𝒫 𝑤 ) | |
| 4 | 3 | sseq1d | ⊢ ( 𝑧 = 𝑤 → ( 𝒫 𝑧 ⊆ 𝑇 ↔ 𝒫 𝑤 ⊆ 𝑇 ) ) |
| 5 | 4 | rspccva | ⊢ ( ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ 𝑤 ∈ 𝑇 ) → 𝒫 𝑤 ⊆ 𝑇 ) |
| 6 | 5 | adantlr | ⊢ ( ( ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ∧ 𝑤 ∈ 𝑇 ) → 𝒫 𝑤 ⊆ 𝑇 ) |
| 7 | vpwex | ⊢ 𝒫 𝑧 ∈ V | |
| 8 | 7 | elpw | ⊢ ( 𝒫 𝑧 ∈ 𝒫 𝑤 ↔ 𝒫 𝑧 ⊆ 𝑤 ) |
| 9 | ssel | ⊢ ( 𝒫 𝑤 ⊆ 𝑇 → ( 𝒫 𝑧 ∈ 𝒫 𝑤 → 𝒫 𝑧 ∈ 𝑇 ) ) | |
| 10 | 8 9 | biimtrrid | ⊢ ( 𝒫 𝑤 ⊆ 𝑇 → ( 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑇 ) ) |
| 11 | 6 10 | syl | ⊢ ( ( ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ 𝑧 ∈ 𝑇 ) ∧ 𝑤 ∈ 𝑇 ) → ( 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑇 ) ) |
| 12 | 11 | rexlimdva | ⊢ ( ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ 𝑧 ∈ 𝑇 ) → ( ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 → 𝒫 𝑧 ∈ 𝑇 ) ) |
| 13 | 2 12 | ralimdaa | ⊢ ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 → ( ∀ 𝑧 ∈ 𝑇 ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 → ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ∈ 𝑇 ) ) |
| 14 | 13 | imdistani | ⊢ ( ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝑇 ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ∈ 𝑇 ) ) |
| 15 | r19.26 | ⊢ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ↔ ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝑇 ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ) | |
| 16 | r19.26 | ⊢ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) ↔ ( ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑇 ∧ ∀ 𝑧 ∈ 𝑇 𝒫 𝑧 ∈ 𝑇 ) ) | |
| 17 | 14 15 16 | 3imtr4i | ⊢ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) → ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) ) |
| 18 | ssid | ⊢ 𝒫 𝑧 ⊆ 𝒫 𝑧 | |
| 19 | sseq2 | ⊢ ( 𝑤 = 𝒫 𝑧 → ( 𝒫 𝑧 ⊆ 𝑤 ↔ 𝒫 𝑧 ⊆ 𝒫 𝑧 ) ) | |
| 20 | 19 | rspcev | ⊢ ( ( 𝒫 𝑧 ∈ 𝑇 ∧ 𝒫 𝑧 ⊆ 𝒫 𝑧 ) → ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) |
| 21 | 18 20 | mpan2 | ⊢ ( 𝒫 𝑧 ∈ 𝑇 → ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) |
| 22 | 21 | anim2i | ⊢ ( ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) → ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ) |
| 23 | 22 | ralimi | ⊢ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) → ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ) |
| 24 | 17 23 | impbii | ⊢ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ↔ ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) ) |
| 25 | 24 | anbi1i | ⊢ ( ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ ∃ 𝑤 ∈ 𝑇 𝒫 𝑧 ⊆ 𝑤 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ↔ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) |
| 26 | 1 25 | bitrdi | ⊢ ( 𝑇 ∈ 𝑉 → ( 𝑇 ∈ Tarski ↔ ( ∀ 𝑧 ∈ 𝑇 ( 𝒫 𝑧 ⊆ 𝑇 ∧ 𝒫 𝑧 ∈ 𝑇 ) ∧ ∀ 𝑧 ∈ 𝒫 𝑇 ( 𝑧 ≈ 𝑇 ∨ 𝑧 ∈ 𝑇 ) ) ) ) |