This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of rankr1a that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013) (Revised by Mario Carneiro, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankr1ag | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1ai | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) → ( rank ‘ 𝐴 ) ∈ 𝐵 ) | |
| 2 | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) | |
| 3 | 2 | simpri | ⊢ Lim dom 𝑅1 |
| 4 | limord | ⊢ ( Lim dom 𝑅1 → Ord dom 𝑅1 ) | |
| 5 | 3 4 | ax-mp | ⊢ Ord dom 𝑅1 |
| 6 | ordelord | ⊢ ( ( Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → Ord 𝐵 ) | |
| 7 | 5 6 | mpan | ⊢ ( 𝐵 ∈ dom 𝑅1 → Ord 𝐵 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → Ord 𝐵 ) |
| 9 | ordsucss | ⊢ ( Ord 𝐵 → ( ( rank ‘ 𝐴 ) ∈ 𝐵 → suc ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 → suc ( rank ‘ 𝐴 ) ⊆ 𝐵 ) ) |
| 11 | rankidb | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) | |
| 12 | elfvdm | ⊢ ( 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) | |
| 13 | 11 12 | syl | ⊢ ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) → suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ) |
| 14 | r1ord3g | ⊢ ( ( suc ( rank ‘ 𝐴 ) ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1 ) → ( suc ( rank ‘ 𝐴 ) ⊆ 𝐵 → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) | |
| 15 | 13 14 | sylan | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( suc ( rank ‘ 𝐴 ) ⊆ 𝐵 → ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 16 | 11 | adantr | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ) |
| 17 | ssel | ⊢ ( ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ 𝐵 ) → ( 𝐴 ∈ ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) → 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) ) | |
| 18 | 16 17 | syl5com | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ( 𝑅1 ‘ suc ( rank ‘ 𝐴 ) ) ⊆ ( 𝑅1 ‘ 𝐵 ) → 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 19 | 10 15 18 | 3syld | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( ( rank ‘ 𝐴 ) ∈ 𝐵 → 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ) ) |
| 20 | 1 19 | impbid2 | ⊢ ( ( 𝐴 ∈ ∪ ( 𝑅1 “ On ) ∧ 𝐵 ∈ dom 𝑅1 ) → ( 𝐴 ∈ ( 𝑅1 ‘ 𝐵 ) ↔ ( rank ‘ 𝐴 ) ∈ 𝐵 ) ) |