This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a continuous function with a measurable function is measurable. (More generally, G can be a Borel-measurable function, but notably the condition that G be only measurable is too weak, the usual counterexample taking G to be the Cantor function and F the indicator function of the G -image of a nonmeasurable set, which is a subset of the Cantor set and hence null and measurable.) (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cncombf | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ( 𝐺 ∘ 𝐹 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) | |
| 2 | cncff | ⊢ ( 𝐺 ∈ ( 𝐵 –cn→ ℂ ) → 𝐺 : 𝐵 ⟶ ℂ ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → 𝐺 : 𝐵 ⟶ ℂ ) |
| 4 | simp2 | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 5 | fco | ⊢ ( ( 𝐺 : 𝐵 ⟶ ℂ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ) |
| 7 | 4 | fdmd | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → dom 𝐹 = 𝐴 ) |
| 8 | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) | |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → dom 𝐹 ∈ dom vol ) |
| 10 | 7 9 | eqeltrrd | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → 𝐴 ∈ dom vol ) |
| 11 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → 𝐴 ⊆ ℝ ) |
| 13 | cnex | ⊢ ℂ ∈ V | |
| 14 | reex | ⊢ ℝ ∈ V | |
| 15 | elpm2r | ⊢ ( ( ( ℂ ∈ V ∧ ℝ ∈ V ) ∧ ( ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( ℂ ↑pm ℝ ) ) | |
| 16 | 13 14 15 | mpanl12 | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℝ ) → ( 𝐺 ∘ 𝐹 ) ∈ ( ℂ ↑pm ℝ ) ) |
| 17 | 6 12 16 | syl2anc | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ( 𝐺 ∘ 𝐹 ) ∈ ( ℂ ↑pm ℝ ) ) |
| 18 | coeq1 | ⊢ ( 𝑔 = ( ℜ ∘ 𝐺 ) → ( 𝑔 ∘ 𝐹 ) = ( ( ℜ ∘ 𝐺 ) ∘ 𝐹 ) ) | |
| 19 | coass | ⊢ ( ( ℜ ∘ 𝐺 ) ∘ 𝐹 ) = ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝑔 = ( ℜ ∘ 𝐺 ) → ( 𝑔 ∘ 𝐹 ) = ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
| 21 | 20 | cnveqd | ⊢ ( 𝑔 = ( ℜ ∘ 𝐺 ) → ◡ ( 𝑔 ∘ 𝐹 ) = ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
| 22 | 21 | imaeq1d | ⊢ ( 𝑔 = ( ℜ ∘ 𝐺 ) → ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) = ( ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ) |
| 23 | 22 | eleq1d | ⊢ ( 𝑔 = ( ℜ ∘ 𝐺 ) → ( ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ↔ ( ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) ) |
| 24 | cnvco | ⊢ ◡ ( 𝑔 ∘ 𝐹 ) = ( ◡ 𝐹 ∘ ◡ 𝑔 ) | |
| 25 | 24 | imaeq1i | ⊢ ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) = ( ( ◡ 𝐹 ∘ ◡ 𝑔 ) “ 𝑥 ) |
| 26 | imaco | ⊢ ( ( ◡ 𝐹 ∘ ◡ 𝑔 ) “ 𝑥 ) = ( ◡ 𝐹 “ ( ◡ 𝑔 “ 𝑥 ) ) | |
| 27 | 25 26 | eqtri | ⊢ ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) = ( ◡ 𝐹 “ ( ◡ 𝑔 “ 𝑥 ) ) |
| 28 | simplll | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝐹 ∈ MblFn ) | |
| 29 | simpllr | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 30 | cncfrss | ⊢ ( 𝑔 ∈ ( 𝐵 –cn→ ℝ ) → 𝐵 ⊆ ℂ ) | |
| 31 | 30 | adantl | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝐵 ⊆ ℂ ) |
| 32 | simpr | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) | |
| 33 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 34 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 35 | eqid | ⊢ ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) = ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) | |
| 36 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 37 | 34 35 36 | cncfcn | ⊢ ( ( 𝐵 ⊆ ℂ ∧ ℝ ⊆ ℂ ) → ( 𝐵 –cn→ ℝ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 38 | 31 33 37 | sylancl | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → ( 𝐵 –cn→ ℝ ) = ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 39 | 32 38 | eleqtrd | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝑔 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) Cn ( topGen ‘ ran (,) ) ) ) |
| 40 | retopbas | ⊢ ran (,) ∈ TopBases | |
| 41 | bastg | ⊢ ( ran (,) ∈ TopBases → ran (,) ⊆ ( topGen ‘ ran (,) ) ) | |
| 42 | 40 41 | ax-mp | ⊢ ran (,) ⊆ ( topGen ‘ ran (,) ) |
| 43 | simplr | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝑥 ∈ ran (,) ) | |
| 44 | 42 43 | sselid | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → 𝑥 ∈ ( topGen ‘ ran (,) ) ) |
| 45 | cnima | ⊢ ( ( 𝑔 ∈ ( ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) Cn ( topGen ‘ ran (,) ) ) ∧ 𝑥 ∈ ( topGen ‘ ran (,) ) ) → ( ◡ 𝑔 “ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) ) | |
| 46 | 39 44 45 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → ( ◡ 𝑔 “ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) ) |
| 47 | 34 35 | mbfimaopn2 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐵 ⊆ ℂ ) ∧ ( ◡ 𝑔 “ 𝑥 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t 𝐵 ) ) → ( ◡ 𝐹 “ ( ◡ 𝑔 “ 𝑥 ) ) ∈ dom vol ) |
| 48 | 28 29 31 46 47 | syl31anc | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → ( ◡ 𝐹 “ ( ◡ 𝑔 “ 𝑥 ) ) ∈ dom vol ) |
| 49 | 27 48 | eqeltrid | ⊢ ( ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) ∧ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ) → ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 50 | 49 | ralrimiva | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑥 ∈ ran (,) ) → ∀ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 51 | 50 | 3adantl3 | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ∀ 𝑔 ∈ ( 𝐵 –cn→ ℝ ) ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) |
| 52 | recncf | ⊢ ℜ ∈ ( ℂ –cn→ ℝ ) | |
| 53 | 52 | a1i | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ℜ ∈ ( ℂ –cn→ ℝ ) ) |
| 54 | 1 53 | cncfco | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ( ℜ ∘ 𝐺 ) ∈ ( 𝐵 –cn→ ℝ ) ) |
| 55 | 54 | adantr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ℜ ∘ 𝐺 ) ∈ ( 𝐵 –cn→ ℝ ) ) |
| 56 | 23 51 55 | rspcdva | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) |
| 57 | coeq1 | ⊢ ( 𝑔 = ( ℑ ∘ 𝐺 ) → ( 𝑔 ∘ 𝐹 ) = ( ( ℑ ∘ 𝐺 ) ∘ 𝐹 ) ) | |
| 58 | coass | ⊢ ( ( ℑ ∘ 𝐺 ) ∘ 𝐹 ) = ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) | |
| 59 | 57 58 | eqtrdi | ⊢ ( 𝑔 = ( ℑ ∘ 𝐺 ) → ( 𝑔 ∘ 𝐹 ) = ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
| 60 | 59 | cnveqd | ⊢ ( 𝑔 = ( ℑ ∘ 𝐺 ) → ◡ ( 𝑔 ∘ 𝐹 ) = ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) ) |
| 61 | 60 | imaeq1d | ⊢ ( 𝑔 = ( ℑ ∘ 𝐺 ) → ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) = ( ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ) |
| 62 | 61 | eleq1d | ⊢ ( 𝑔 = ( ℑ ∘ 𝐺 ) → ( ( ◡ ( 𝑔 ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ↔ ( ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) ) |
| 63 | imcncf | ⊢ ℑ ∈ ( ℂ –cn→ ℝ ) | |
| 64 | 63 | a1i | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ℑ ∈ ( ℂ –cn→ ℝ ) ) |
| 65 | 1 64 | cncfco | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ( ℑ ∘ 𝐺 ) ∈ ( 𝐵 –cn→ ℝ ) ) |
| 66 | 65 | adantr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ℑ ∘ 𝐺 ) ∈ ( 𝐵 –cn→ ℝ ) ) |
| 67 | 62 51 66 | rspcdva | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) |
| 68 | 56 67 | jca | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) ∧ 𝑥 ∈ ran (,) ) → ( ( ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) ) |
| 69 | 68 | ralrimiva | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) ) |
| 70 | ismbf1 | ⊢ ( ( 𝐺 ∘ 𝐹 ) ∈ MblFn ↔ ( ( 𝐺 ∘ 𝐹 ) ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ ( 𝐺 ∘ 𝐹 ) ) “ 𝑥 ) ∈ dom vol ) ) ) | |
| 71 | 17 69 70 | sylanbrc | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐺 ∈ ( 𝐵 –cn→ ℂ ) ) → ( 𝐺 ∘ 𝐹 ) ∈ MblFn ) |