This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for iblabs . (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iblabs.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| iblabs.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| iblabs.3 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) | ||
| iblabs.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ 𝐿1 ) | ||
| iblabs.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) | ||
| Assertion | iblabslem | ⊢ ( 𝜑 → ( 𝐺 ∈ MblFn ∧ ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblabs.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | iblabs.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 3 | iblabs.3 | ⊢ 𝐺 = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) | |
| 4 | iblabs.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ 𝐿1 ) | |
| 5 | iblabs.5 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) | |
| 6 | 5 | iblrelem | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 7 | 4 6 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) |
| 8 | 7 | simp1d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ) |
| 9 | 8 5 | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 10 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 11 | 9 10 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 12 | rembl | ⊢ ℝ ∈ dom vol | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → ℝ ∈ dom vol ) |
| 14 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) = ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) | |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) = ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 16 | 5 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝐵 ) ∈ ℂ ) |
| 17 | 16 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ ) |
| 18 | 15 17 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ∈ ℝ ) |
| 19 | eldifn | ⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) | |
| 20 | 19 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 21 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) = 0 ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) = 0 ) |
| 23 | 14 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 24 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 25 | 24 | a1i | ⊢ ( 𝜑 → abs : ℂ ⟶ ℝ ) |
| 26 | 25 16 | cofmpt | ⊢ ( 𝜑 → ( abs ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ) = ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 27 | 23 26 | eqtr4id | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) = ( abs ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 28 | 16 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ) |
| 29 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 30 | ssid | ⊢ ℂ ⊆ ℂ | |
| 31 | cncfss | ⊢ ( ( ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( ℂ –cn→ ℝ ) ⊆ ( ℂ –cn→ ℂ ) ) | |
| 32 | 29 30 31 | mp2an | ⊢ ( ℂ –cn→ ℝ ) ⊆ ( ℂ –cn→ ℂ ) |
| 33 | abscncf | ⊢ abs ∈ ( ℂ –cn→ ℝ ) | |
| 34 | 32 33 | sselii | ⊢ abs ∈ ( ℂ –cn→ ℂ ) |
| 35 | 34 | a1i | ⊢ ( 𝜑 → abs ∈ ( ℂ –cn→ ℂ ) ) |
| 36 | cncombf | ⊢ ( ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) : 𝐴 ⟶ ℂ ∧ abs ∈ ( ℂ –cn→ ℂ ) ) → ( abs ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ) ∈ MblFn ) | |
| 37 | 8 28 35 36 | syl3anc | ⊢ ( 𝜑 → ( abs ∘ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝐵 ) ) ) ∈ MblFn ) |
| 38 | 27 37 | eqeltrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ∈ MblFn ) |
| 39 | 11 13 18 22 38 | mbfss | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ∈ MblFn ) |
| 40 | 3 39 | eqeltrid | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
| 41 | reex | ⊢ ℝ ∈ V | |
| 42 | 41 | a1i | ⊢ ( 𝜑 → ℝ ∈ V ) |
| 43 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) | |
| 44 | 0re | ⊢ 0 ∈ ℝ | |
| 45 | ifcl | ⊢ ( ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ) | |
| 46 | 5 44 45 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 47 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) | |
| 48 | 44 5 47 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 49 | elrege0 | ⊢ ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) | |
| 50 | 46 48 49 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 51 | 0e0icopnf | ⊢ 0 ∈ ( 0 [,) +∞ ) | |
| 52 | 51 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 53 | 50 52 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 54 | 43 53 | eqeltrid | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 55 | 54 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 56 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) | |
| 57 | 5 | renegcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → - ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) |
| 58 | ifcl | ⊢ ( ( - ( 𝐹 ‘ 𝐵 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ) | |
| 59 | 57 44 58 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ) |
| 60 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ - ( 𝐹 ‘ 𝐵 ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) | |
| 61 | 44 57 60 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 62 | elrege0 | ⊢ ( if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ↔ ( if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ℝ ∧ 0 ≤ if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) | |
| 63 | 59 61 62 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 64 | 63 52 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 65 | 56 64 | eqeltrid | ⊢ ( 𝜑 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 66 | 65 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 67 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) | |
| 68 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) | |
| 69 | 42 55 66 67 68 | offval2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) |
| 70 | 43 56 | oveq12i | ⊢ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) |
| 71 | max0add | ⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ → ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) | |
| 72 | 5 71 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 73 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) | |
| 74 | 73 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 75 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) | |
| 76 | 75 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 77 | 74 76 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = ( if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) |
| 78 | 72 77 15 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
| 79 | 78 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ) |
| 80 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 81 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = 0 ) | |
| 82 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) = 0 ) | |
| 83 | 81 82 | oveq12d | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = ( 0 + 0 ) ) |
| 84 | 80 83 21 | 3eqtr4a | ⊢ ( ¬ 𝑥 ∈ 𝐴 → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
| 85 | 79 84 | pm2.61d1 | ⊢ ( 𝜑 → ( if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) + if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
| 86 | 70 85 | eqtrid | ⊢ ( 𝜑 → ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) |
| 87 | 86 | mpteq2dv | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) + if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ) |
| 88 | 69 87 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ ( 𝐹 ‘ 𝐵 ) ) , 0 ) ) ) |
| 89 | 3 88 | eqtr4id | ⊢ ( 𝜑 → 𝐺 = ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) |
| 90 | 89 | fveq2d | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) = ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) ) |
| 91 | 54 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 92 | 43 81 | eqtrid | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) = 0 ) |
| 93 | 20 92 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) = 0 ) |
| 94 | ibar | ⊢ ( 𝑥 ∈ 𝐴 → ( 0 ≤ ( 𝐹 ‘ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) ) ) | |
| 95 | 94 | ifbid | ⊢ ( 𝑥 ∈ 𝐴 → if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 96 | 95 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 97 | 5 8 | mbfpos | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ ( 𝐹 ‘ 𝐵 ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 98 | 96 97 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 99 | 11 13 91 93 98 | mbfss | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 100 | 55 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 101 | 7 | simp2d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
| 102 | 65 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 103 | 56 82 | eqtrid | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) = 0 ) |
| 104 | 20 103 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) = 0 ) |
| 105 | ibar | ⊢ ( 𝑥 ∈ 𝐴 → ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) ) ) | |
| 106 | 105 | ifbid | ⊢ ( 𝑥 ∈ 𝐴 → if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 107 | 106 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) |
| 108 | 5 8 | mbfneg | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ - ( 𝐹 ‘ 𝐵 ) ) ∈ MblFn ) |
| 109 | 57 108 | mbfpos | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 0 ≤ - ( 𝐹 ‘ 𝐵 ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 110 | 107 109 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 111 | 11 13 102 104 110 | mbfss | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 112 | 66 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 113 | 7 | simp3d | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
| 114 | 99 100 101 111 112 113 | itg2add | ⊢ ( 𝜑 → ( ∫2 ‘ ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ∘f + ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) ) |
| 115 | 90 114 | eqtrd | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) = ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) ) |
| 116 | 101 113 | readdcld | ⊢ ( 𝜑 → ( ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) , ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) + ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ - ( 𝐹 ‘ 𝐵 ) ) , - ( 𝐹 ‘ 𝐵 ) , 0 ) ) ) ) ∈ ℝ ) |
| 117 | 115 116 | eqeltrd | ⊢ ( 𝜑 → ( ∫2 ‘ 𝐺 ) ∈ ℝ ) |
| 118 | 40 117 | jca | ⊢ ( 𝜑 → ( 𝐺 ∈ MblFn ∧ ( ∫2 ‘ 𝐺 ) ∈ ℝ ) ) |