This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A measurable function is integrable iff its absolute value is integrable. (See iblabs for the forward implication.) (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iblabsr.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| iblabsr.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | ||
| iblabsr.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) | ||
| Assertion | iblabsr | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iblabsr.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | iblabsr.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 3 | iblabsr.3 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) | |
| 4 | ifan | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) | |
| 5 | 2 1 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 6 | 5 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 7 | ax-icn | ⊢ i ∈ ℂ | |
| 8 | ine0 | ⊢ i ≠ 0 | |
| 9 | elfzelz | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℤ ) | |
| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑘 ∈ ℤ ) |
| 11 | expclz | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ∈ ℂ ) | |
| 12 | 7 8 10 11 | mp3an12i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 13 | expne0i | ⊢ ( ( i ∈ ℂ ∧ i ≠ 0 ∧ 𝑘 ∈ ℤ ) → ( i ↑ 𝑘 ) ≠ 0 ) | |
| 14 | 7 8 10 13 | mp3an12i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( i ↑ 𝑘 ) ≠ 0 ) |
| 15 | 6 12 14 | divcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 / ( i ↑ 𝑘 ) ) ∈ ℂ ) |
| 16 | 15 | recld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ∈ ℝ ) |
| 17 | 0re | ⊢ 0 ∈ ℝ | |
| 18 | ifcl | ⊢ ( ( ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ ) | |
| 19 | 16 17 18 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ ) |
| 20 | 19 | rexrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ* ) |
| 21 | max1 | ⊢ ( ( 0 ∈ ℝ ∧ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ∈ ℝ ) → 0 ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) | |
| 22 | 17 16 21 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 23 | elxrge0 | ⊢ ( if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ↔ ( if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ℝ* ∧ 0 ≤ if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 24 | 20 22 23 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 25 | 0e0iccpnf | ⊢ 0 ∈ ( 0 [,] +∞ ) | |
| 26 | 25 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 27 | 24 26 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 28 | 4 27 | eqeltrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 30 | 29 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 31 | 5 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 32 | 5 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 33 | 31 32 | iblpos | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 34 | 3 33 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) |
| 35 | 34 | simprd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
| 37 | 31 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ* ) |
| 38 | elxrge0 | ⊢ ( ( abs ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( abs ‘ 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) | |
| 39 | 37 32 38 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 40 | 25 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,] +∞ ) ) |
| 41 | 39 40 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 43 | 42 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ) |
| 45 | 15 | releabsd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ≤ ( abs ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
| 46 | 6 12 14 | absdivd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ( abs ‘ 𝐵 ) / ( abs ‘ ( i ↑ 𝑘 ) ) ) ) |
| 47 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → 𝑘 ∈ ℕ0 ) | |
| 48 | 47 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝑘 ∈ ℕ0 ) |
| 49 | absexp | ⊢ ( ( i ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( abs ‘ ( i ↑ 𝑘 ) ) = ( ( abs ‘ i ) ↑ 𝑘 ) ) | |
| 50 | 7 48 49 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( i ↑ 𝑘 ) ) = ( ( abs ‘ i ) ↑ 𝑘 ) ) |
| 51 | absi | ⊢ ( abs ‘ i ) = 1 | |
| 52 | 51 | oveq1i | ⊢ ( ( abs ‘ i ) ↑ 𝑘 ) = ( 1 ↑ 𝑘 ) |
| 53 | 1exp | ⊢ ( 𝑘 ∈ ℤ → ( 1 ↑ 𝑘 ) = 1 ) | |
| 54 | 10 53 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 1 ↑ 𝑘 ) = 1 ) |
| 55 | 52 54 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ i ) ↑ 𝑘 ) = 1 ) |
| 56 | 50 55 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( i ↑ 𝑘 ) ) = 1 ) |
| 57 | 56 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ 𝐵 ) / ( abs ‘ ( i ↑ 𝑘 ) ) ) = ( ( abs ‘ 𝐵 ) / 1 ) ) |
| 58 | 31 | recnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℂ ) |
| 59 | 58 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℂ ) |
| 60 | 59 | div1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ( abs ‘ 𝐵 ) / 1 ) = ( abs ‘ 𝐵 ) ) |
| 61 | 46 57 60 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( abs ‘ 𝐵 ) ) |
| 62 | 45 61 | breqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ≤ ( abs ‘ 𝐵 ) ) |
| 63 | 6 | absge0d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 64 | breq1 | ⊢ ( ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) → ( ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ≤ ( abs ‘ 𝐵 ) ↔ if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ ( abs ‘ 𝐵 ) ) ) | |
| 65 | breq1 | ⊢ ( 0 = if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) → ( 0 ≤ ( abs ‘ 𝐵 ) ↔ if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ ( abs ‘ 𝐵 ) ) ) | |
| 66 | 64 65 | ifboth | ⊢ ( ( ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ≤ ( abs ‘ 𝐵 ) ∧ 0 ≤ ( abs ‘ 𝐵 ) ) → if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ ( abs ‘ 𝐵 ) ) |
| 67 | 62 63 66 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ ( abs ‘ 𝐵 ) ) |
| 68 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) | |
| 69 | 68 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 70 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) = ( abs ‘ 𝐵 ) ) | |
| 71 | 70 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) = ( abs ‘ 𝐵 ) ) |
| 72 | 67 69 71 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) |
| 73 | 72 | ex | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) |
| 74 | 0le0 | ⊢ 0 ≤ 0 | |
| 75 | 74 | a1i | ⊢ ( ¬ 𝑥 ∈ 𝐴 → 0 ≤ 0 ) |
| 76 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) = 0 ) | |
| 77 | iffalse | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) = 0 ) | |
| 78 | 75 76 77 | 3brtr4d | ⊢ ( ¬ 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) |
| 79 | 73 78 | pm2.61d1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → if ( 𝑥 ∈ 𝐴 , if ( 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) |
| 80 | 4 79 | eqbrtrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) |
| 81 | 80 | ralrimivw | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) |
| 82 | reex | ⊢ ℝ ∈ V | |
| 83 | 82 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ℝ ∈ V ) |
| 84 | 37 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ* ) |
| 85 | 84 63 38 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 86 | 85 26 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 87 | 86 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,] +∞ ) ) |
| 88 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 89 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) | |
| 90 | 83 29 87 88 89 | ofrfval2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ≤ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) |
| 91 | 81 90 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) |
| 92 | itg2le | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ∘r ≤ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ) | |
| 93 | 30 44 91 92 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ) |
| 94 | itg2lecl | ⊢ ( ( ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) : ℝ ⟶ ( 0 [,] +∞ ) ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ≤ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) | |
| 95 | 30 36 93 94 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 0 ... 3 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 96 | 95 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) |
| 97 | eqidd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) | |
| 98 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) | |
| 99 | 97 98 1 | isibl2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ∧ ∀ 𝑘 ∈ ( 0 ... 3 ) ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 100 | 2 96 99 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) |