This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexadd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 2 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 3 | xaddval | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 +𝑒 𝐵 ) = if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 𝐵 ) = if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) ) |
| 5 | renepnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ +∞ ) | |
| 6 | ifnefalse | ⊢ ( 𝐴 ≠ +∞ → if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) = if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ∈ ℝ → if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) = if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) |
| 8 | renemnf | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≠ -∞ ) | |
| 9 | ifnefalse | ⊢ ( 𝐴 ≠ -∞ → if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) = if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ∈ ℝ → if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) = if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) |
| 11 | 7 10 | eqtrd | ⊢ ( 𝐴 ∈ ℝ → if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) = if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) |
| 12 | renepnf | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ≠ +∞ ) | |
| 13 | ifnefalse | ⊢ ( 𝐵 ≠ +∞ → if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) = if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐵 ∈ ℝ → if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) = if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) |
| 15 | renemnf | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ≠ -∞ ) | |
| 16 | ifnefalse | ⊢ ( 𝐵 ≠ -∞ → if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) = ( 𝐴 + 𝐵 ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝐵 ∈ ℝ → if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) = ( 𝐴 + 𝐵 ) ) |
| 18 | 14 17 | eqtrd | ⊢ ( 𝐵 ∈ ℝ → if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) = ( 𝐴 + 𝐵 ) ) |
| 19 | 11 18 | sylan9eq | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → if ( 𝐴 = +∞ , if ( 𝐵 = -∞ , 0 , +∞ ) , if ( 𝐴 = -∞ , if ( 𝐵 = +∞ , 0 , -∞ ) , if ( 𝐵 = +∞ , +∞ , if ( 𝐵 = -∞ , -∞ , ( 𝐴 + 𝐵 ) ) ) ) ) = ( 𝐴 + 𝐵 ) ) |
| 20 | 4 19 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 +𝑒 𝐵 ) = ( 𝐴 + 𝐵 ) ) |