This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . Since the sequence of balls connected by the function T ensures that each ball nontrivially intersects with the next (since the empty set has a finite subcover, the intersection of any two successive balls in the sequence is nonempty), and each ball is half the size of the previous one, the distance between the centers is at most 3 / 2 times the size of the larger, and so if we expand each ball by a factor of 3 we get a nested sequence of balls. (Contributed by Jeff Madsen, 23-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | |- J = ( MetOpen ` D ) |
|
| heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
||
| heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
||
| heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
||
| heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
||
| heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
||
| heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
||
| heibor.9 | |- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
||
| heibor.10 | |- ( ph -> C G 0 ) |
||
| heibor.11 | |- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
||
| heibor.12 | |- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
||
| Assertion | heiborlem6 | |- ( ph -> A. k e. NN ( ( ball ` D ) ` ( M ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( M ` k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | |- J = ( MetOpen ` D ) |
|
| 2 | heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
|
| 3 | heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
|
| 4 | heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
|
| 5 | heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
|
| 6 | heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
|
| 7 | heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
|
| 8 | heibor.9 | |- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
|
| 9 | heibor.10 | |- ( ph -> C G 0 ) |
|
| 10 | heibor.11 | |- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
|
| 11 | heibor.12 | |- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
|
| 12 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 13 | cmetmet | |- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
|
| 14 | 5 13 | syl | |- ( ph -> D e. ( Met ` X ) ) |
| 15 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 16 | 14 15 | syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 17 | 16 | adantr | |- ( ( ph /\ k e. NN0 ) -> D e. ( *Met ` X ) ) |
| 18 | inss1 | |- ( ~P X i^i Fin ) C_ ~P X |
|
| 19 | fss | |- ( ( F : NN0 --> ( ~P X i^i Fin ) /\ ( ~P X i^i Fin ) C_ ~P X ) -> F : NN0 --> ~P X ) |
|
| 20 | 6 18 19 | sylancl | |- ( ph -> F : NN0 --> ~P X ) |
| 21 | peano2nn0 | |- ( k e. NN0 -> ( k + 1 ) e. NN0 ) |
|
| 22 | ffvelcdm | |- ( ( F : NN0 --> ~P X /\ ( k + 1 ) e. NN0 ) -> ( F ` ( k + 1 ) ) e. ~P X ) |
|
| 23 | 20 21 22 | syl2an | |- ( ( ph /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) e. ~P X ) |
| 24 | 23 | elpwid | |- ( ( ph /\ k e. NN0 ) -> ( F ` ( k + 1 ) ) C_ X ) |
| 25 | 1 2 3 4 5 6 7 8 9 10 | heiborlem4 | |- ( ( ph /\ ( k + 1 ) e. NN0 ) -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) |
| 26 | 21 25 | sylan2 | |- ( ( ph /\ k e. NN0 ) -> ( S ` ( k + 1 ) ) G ( k + 1 ) ) |
| 27 | fvex | |- ( S ` ( k + 1 ) ) e. _V |
|
| 28 | ovex | |- ( k + 1 ) e. _V |
|
| 29 | 1 2 3 27 28 | heiborlem2 | |- ( ( S ` ( k + 1 ) ) G ( k + 1 ) <-> ( ( k + 1 ) e. NN0 /\ ( S ` ( k + 1 ) ) e. ( F ` ( k + 1 ) ) /\ ( ( S ` ( k + 1 ) ) B ( k + 1 ) ) e. K ) ) |
| 30 | 29 | simp2bi | |- ( ( S ` ( k + 1 ) ) G ( k + 1 ) -> ( S ` ( k + 1 ) ) e. ( F ` ( k + 1 ) ) ) |
| 31 | 26 30 | syl | |- ( ( ph /\ k e. NN0 ) -> ( S ` ( k + 1 ) ) e. ( F ` ( k + 1 ) ) ) |
| 32 | 24 31 | sseldd | |- ( ( ph /\ k e. NN0 ) -> ( S ` ( k + 1 ) ) e. X ) |
| 33 | 20 | ffvelcdmda | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) e. ~P X ) |
| 34 | 33 | elpwid | |- ( ( ph /\ k e. NN0 ) -> ( F ` k ) C_ X ) |
| 35 | 1 2 3 4 5 6 7 8 9 10 | heiborlem4 | |- ( ( ph /\ k e. NN0 ) -> ( S ` k ) G k ) |
| 36 | fvex | |- ( S ` k ) e. _V |
|
| 37 | vex | |- k e. _V |
|
| 38 | 1 2 3 36 37 | heiborlem2 | |- ( ( S ` k ) G k <-> ( k e. NN0 /\ ( S ` k ) e. ( F ` k ) /\ ( ( S ` k ) B k ) e. K ) ) |
| 39 | 38 | simp2bi | |- ( ( S ` k ) G k -> ( S ` k ) e. ( F ` k ) ) |
| 40 | 35 39 | syl | |- ( ( ph /\ k e. NN0 ) -> ( S ` k ) e. ( F ` k ) ) |
| 41 | 34 40 | sseldd | |- ( ( ph /\ k e. NN0 ) -> ( S ` k ) e. X ) |
| 42 | 3re | |- 3 e. RR |
|
| 43 | 2nn | |- 2 e. NN |
|
| 44 | nnexpcl | |- ( ( 2 e. NN /\ ( k + 1 ) e. NN0 ) -> ( 2 ^ ( k + 1 ) ) e. NN ) |
|
| 45 | 43 21 44 | sylancr | |- ( k e. NN0 -> ( 2 ^ ( k + 1 ) ) e. NN ) |
| 46 | 45 | nnrpd | |- ( k e. NN0 -> ( 2 ^ ( k + 1 ) ) e. RR+ ) |
| 47 | 46 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( 2 ^ ( k + 1 ) ) e. RR+ ) |
| 48 | rerpdivcl | |- ( ( 3 e. RR /\ ( 2 ^ ( k + 1 ) ) e. RR+ ) -> ( 3 / ( 2 ^ ( k + 1 ) ) ) e. RR ) |
|
| 49 | 42 47 48 | sylancr | |- ( ( ph /\ k e. NN0 ) -> ( 3 / ( 2 ^ ( k + 1 ) ) ) e. RR ) |
| 50 | nnexpcl | |- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
|
| 51 | 43 50 | mpan | |- ( k e. NN0 -> ( 2 ^ k ) e. NN ) |
| 52 | 51 | nnrpd | |- ( k e. NN0 -> ( 2 ^ k ) e. RR+ ) |
| 53 | 52 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( 2 ^ k ) e. RR+ ) |
| 54 | rerpdivcl | |- ( ( 3 e. RR /\ ( 2 ^ k ) e. RR+ ) -> ( 3 / ( 2 ^ k ) ) e. RR ) |
|
| 55 | 42 53 54 | sylancr | |- ( ( ph /\ k e. NN0 ) -> ( 3 / ( 2 ^ k ) ) e. RR ) |
| 56 | oveq1 | |- ( z = ( S ` k ) -> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) = ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
|
| 57 | oveq2 | |- ( m = k -> ( 2 ^ m ) = ( 2 ^ k ) ) |
|
| 58 | 57 | oveq2d | |- ( m = k -> ( 1 / ( 2 ^ m ) ) = ( 1 / ( 2 ^ k ) ) ) |
| 59 | 58 | oveq2d | |- ( m = k -> ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) = ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) ) |
| 60 | ovex | |- ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) e. _V |
|
| 61 | 56 59 4 60 | ovmpo | |- ( ( ( S ` k ) e. X /\ k e. NN0 ) -> ( ( S ` k ) B k ) = ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) ) |
| 62 | 41 61 | sylancom | |- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) B k ) = ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) ) |
| 63 | df-br | |- ( ( S ` k ) G k <-> <. ( S ` k ) , k >. e. G ) |
|
| 64 | fveq2 | |- ( x = <. ( S ` k ) , k >. -> ( T ` x ) = ( T ` <. ( S ` k ) , k >. ) ) |
|
| 65 | df-ov | |- ( ( S ` k ) T k ) = ( T ` <. ( S ` k ) , k >. ) |
|
| 66 | 64 65 | eqtr4di | |- ( x = <. ( S ` k ) , k >. -> ( T ` x ) = ( ( S ` k ) T k ) ) |
| 67 | 36 37 | op2ndd | |- ( x = <. ( S ` k ) , k >. -> ( 2nd ` x ) = k ) |
| 68 | 67 | oveq1d | |- ( x = <. ( S ` k ) , k >. -> ( ( 2nd ` x ) + 1 ) = ( k + 1 ) ) |
| 69 | 66 68 | breq12d | |- ( x = <. ( S ` k ) , k >. -> ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) <-> ( ( S ` k ) T k ) G ( k + 1 ) ) ) |
| 70 | fveq2 | |- ( x = <. ( S ` k ) , k >. -> ( B ` x ) = ( B ` <. ( S ` k ) , k >. ) ) |
|
| 71 | df-ov | |- ( ( S ` k ) B k ) = ( B ` <. ( S ` k ) , k >. ) |
|
| 72 | 70 71 | eqtr4di | |- ( x = <. ( S ` k ) , k >. -> ( B ` x ) = ( ( S ` k ) B k ) ) |
| 73 | 66 68 | oveq12d | |- ( x = <. ( S ` k ) , k >. -> ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) = ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) |
| 74 | 72 73 | ineq12d | |- ( x = <. ( S ` k ) , k >. -> ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) = ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) ) |
| 75 | 74 | eleq1d | |- ( x = <. ( S ` k ) , k >. -> ( ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K <-> ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) |
| 76 | 69 75 | anbi12d | |- ( x = <. ( S ` k ) , k >. -> ( ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) <-> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 77 | 76 | rspccv | |- ( A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) -> ( <. ( S ` k ) , k >. e. G -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 78 | 8 77 | syl | |- ( ph -> ( <. ( S ` k ) , k >. e. G -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 79 | 63 78 | biimtrid | |- ( ph -> ( ( S ` k ) G k -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 80 | 79 | adantr | |- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) G k -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) ) |
| 81 | 35 80 | mpd | |- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) T k ) G ( k + 1 ) /\ ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) ) |
| 82 | 81 | simpld | |- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) T k ) G ( k + 1 ) ) |
| 83 | ovex | |- ( ( S ` k ) T k ) e. _V |
|
| 84 | 1 2 3 83 28 | heiborlem2 | |- ( ( ( S ` k ) T k ) G ( k + 1 ) <-> ( ( k + 1 ) e. NN0 /\ ( ( S ` k ) T k ) e. ( F ` ( k + 1 ) ) /\ ( ( ( S ` k ) T k ) B ( k + 1 ) ) e. K ) ) |
| 85 | 84 | simp2bi | |- ( ( ( S ` k ) T k ) G ( k + 1 ) -> ( ( S ` k ) T k ) e. ( F ` ( k + 1 ) ) ) |
| 86 | 82 85 | syl | |- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) T k ) e. ( F ` ( k + 1 ) ) ) |
| 87 | 24 86 | sseldd | |- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) T k ) e. X ) |
| 88 | 21 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( k + 1 ) e. NN0 ) |
| 89 | oveq1 | |- ( z = ( ( S ` k ) T k ) -> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) = ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
|
| 90 | oveq2 | |- ( m = ( k + 1 ) -> ( 2 ^ m ) = ( 2 ^ ( k + 1 ) ) ) |
|
| 91 | 90 | oveq2d | |- ( m = ( k + 1 ) -> ( 1 / ( 2 ^ m ) ) = ( 1 / ( 2 ^ ( k + 1 ) ) ) ) |
| 92 | 91 | oveq2d | |- ( m = ( k + 1 ) -> ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) = ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 93 | ovex | |- ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) e. _V |
|
| 94 | 89 92 4 93 | ovmpo | |- ( ( ( ( S ` k ) T k ) e. X /\ ( k + 1 ) e. NN0 ) -> ( ( ( S ` k ) T k ) B ( k + 1 ) ) = ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 95 | 87 88 94 | syl2anc | |- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) T k ) B ( k + 1 ) ) = ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 96 | 62 95 | ineq12d | |- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) = ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) ) |
| 97 | 81 | simprd | |- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K ) |
| 98 | 0elpw | |- (/) e. ~P U |
|
| 99 | 0fi | |- (/) e. Fin |
|
| 100 | elin | |- ( (/) e. ( ~P U i^i Fin ) <-> ( (/) e. ~P U /\ (/) e. Fin ) ) |
|
| 101 | 98 99 100 | mpbir2an | |- (/) e. ( ~P U i^i Fin ) |
| 102 | 0ss | |- (/) C_ U. (/) |
|
| 103 | unieq | |- ( v = (/) -> U. v = U. (/) ) |
|
| 104 | 103 | sseq2d | |- ( v = (/) -> ( (/) C_ U. v <-> (/) C_ U. (/) ) ) |
| 105 | 104 | rspcev | |- ( ( (/) e. ( ~P U i^i Fin ) /\ (/) C_ U. (/) ) -> E. v e. ( ~P U i^i Fin ) (/) C_ U. v ) |
| 106 | 101 102 105 | mp2an | |- E. v e. ( ~P U i^i Fin ) (/) C_ U. v |
| 107 | 0ex | |- (/) e. _V |
|
| 108 | sseq1 | |- ( u = (/) -> ( u C_ U. v <-> (/) C_ U. v ) ) |
|
| 109 | 108 | rexbidv | |- ( u = (/) -> ( E. v e. ( ~P U i^i Fin ) u C_ U. v <-> E. v e. ( ~P U i^i Fin ) (/) C_ U. v ) ) |
| 110 | 109 | notbid | |- ( u = (/) -> ( -. E. v e. ( ~P U i^i Fin ) u C_ U. v <-> -. E. v e. ( ~P U i^i Fin ) (/) C_ U. v ) ) |
| 111 | 107 110 2 | elab2 | |- ( (/) e. K <-> -. E. v e. ( ~P U i^i Fin ) (/) C_ U. v ) |
| 112 | 111 | con2bii | |- ( E. v e. ( ~P U i^i Fin ) (/) C_ U. v <-> -. (/) e. K ) |
| 113 | 106 112 | mpbi | |- -. (/) e. K |
| 114 | nelne2 | |- ( ( ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) e. K /\ -. (/) e. K ) -> ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) =/= (/) ) |
|
| 115 | 97 113 114 | sylancl | |- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) B k ) i^i ( ( ( S ` k ) T k ) B ( k + 1 ) ) ) =/= (/) ) |
| 116 | 96 115 | eqnetrrd | |- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) =/= (/) ) |
| 117 | 52 | rpreccld | |- ( k e. NN0 -> ( 1 / ( 2 ^ k ) ) e. RR+ ) |
| 118 | 117 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( 1 / ( 2 ^ k ) ) e. RR+ ) |
| 119 | 118 | rpred | |- ( ( ph /\ k e. NN0 ) -> ( 1 / ( 2 ^ k ) ) e. RR ) |
| 120 | 46 | rpreccld | |- ( k e. NN0 -> ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR+ ) |
| 121 | 120 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR+ ) |
| 122 | 121 | rpred | |- ( ( ph /\ k e. NN0 ) -> ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR ) |
| 123 | rexadd | |- ( ( ( 1 / ( 2 ^ k ) ) e. RR /\ ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR ) -> ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
|
| 124 | 119 122 123 | syl2anc | |- ( ( ph /\ k e. NN0 ) -> ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 125 | 124 | breq1d | |- ( ( ph /\ k e. NN0 ) -> ( ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) <-> ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) ) ) |
| 126 | 118 | rpxrd | |- ( ( ph /\ k e. NN0 ) -> ( 1 / ( 2 ^ k ) ) e. RR* ) |
| 127 | 121 | rpxrd | |- ( ( ph /\ k e. NN0 ) -> ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR* ) |
| 128 | bldisj | |- ( ( ( D e. ( *Met ` X ) /\ ( S ` k ) e. X /\ ( ( S ` k ) T k ) e. X ) /\ ( ( 1 / ( 2 ^ k ) ) e. RR* /\ ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR* /\ ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) ) ) -> ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) = (/) ) |
|
| 129 | 128 | 3exp2 | |- ( ( D e. ( *Met ` X ) /\ ( S ` k ) e. X /\ ( ( S ` k ) T k ) e. X ) -> ( ( 1 / ( 2 ^ k ) ) e. RR* -> ( ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR* -> ( ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) -> ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) = (/) ) ) ) ) |
| 130 | 129 | imp32 | |- ( ( ( D e. ( *Met ` X ) /\ ( S ` k ) e. X /\ ( ( S ` k ) T k ) e. X ) /\ ( ( 1 / ( 2 ^ k ) ) e. RR* /\ ( 1 / ( 2 ^ ( k + 1 ) ) ) e. RR* ) ) -> ( ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) -> ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) = (/) ) ) |
| 131 | 17 41 87 126 127 130 | syl32anc | |- ( ( ph /\ k e. NN0 ) -> ( ( ( 1 / ( 2 ^ k ) ) +e ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) -> ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) = (/) ) ) |
| 132 | 125 131 | sylbird | |- ( ( ph /\ k e. NN0 ) -> ( ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) -> ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) = (/) ) ) |
| 133 | 132 | necon3ad | |- ( ( ph /\ k e. NN0 ) -> ( ( ( ( S ` k ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) i^i ( ( ( S ` k ) T k ) ( ball ` D ) ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) =/= (/) -> -. ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) ) ) |
| 134 | 116 133 | mpd | |- ( ( ph /\ k e. NN0 ) -> -. ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) ) |
| 135 | 118 121 | rpaddcld | |- ( ( ph /\ k e. NN0 ) -> ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) e. RR+ ) |
| 136 | 135 | rpred | |- ( ( ph /\ k e. NN0 ) -> ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) e. RR ) |
| 137 | 14 | adantr | |- ( ( ph /\ k e. NN0 ) -> D e. ( Met ` X ) ) |
| 138 | metcl | |- ( ( D e. ( Met ` X ) /\ ( S ` k ) e. X /\ ( ( S ` k ) T k ) e. X ) -> ( ( S ` k ) D ( ( S ` k ) T k ) ) e. RR ) |
|
| 139 | 137 41 87 138 | syl3anc | |- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) D ( ( S ` k ) T k ) ) e. RR ) |
| 140 | 136 139 | letrid | |- ( ( ph /\ k e. NN0 ) -> ( ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) \/ ( ( S ` k ) D ( ( S ` k ) T k ) ) <_ ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) ) |
| 141 | 140 | ord | |- ( ( ph /\ k e. NN0 ) -> ( -. ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) <_ ( ( S ` k ) D ( ( S ` k ) T k ) ) -> ( ( S ` k ) D ( ( S ` k ) T k ) ) <_ ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) ) |
| 142 | 134 141 | mpd | |- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) D ( ( S ` k ) T k ) ) <_ ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 143 | seqp1 | |- ( k e. ( ZZ>= ` 0 ) -> ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` ( k + 1 ) ) = ( ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) ) |
|
| 144 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 145 | 143 144 | eleq2s | |- ( k e. NN0 -> ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` ( k + 1 ) ) = ( ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) ) |
| 146 | 10 | fveq1i | |- ( S ` ( k + 1 ) ) = ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` ( k + 1 ) ) |
| 147 | 10 | fveq1i | |- ( S ` k ) = ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) |
| 148 | 147 | oveq1i | |- ( ( S ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) = ( ( seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) |
| 149 | 145 146 148 | 3eqtr4g | |- ( k e. NN0 -> ( S ` ( k + 1 ) ) = ( ( S ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) ) |
| 150 | eqid | |- ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) = ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) |
|
| 151 | eqeq1 | |- ( m = ( k + 1 ) -> ( m = 0 <-> ( k + 1 ) = 0 ) ) |
|
| 152 | oveq1 | |- ( m = ( k + 1 ) -> ( m - 1 ) = ( ( k + 1 ) - 1 ) ) |
|
| 153 | 151 152 | ifbieq2d | |- ( m = ( k + 1 ) -> if ( m = 0 , C , ( m - 1 ) ) = if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) ) |
| 154 | nn0p1nn | |- ( k e. NN0 -> ( k + 1 ) e. NN ) |
|
| 155 | nnne0 | |- ( ( k + 1 ) e. NN -> ( k + 1 ) =/= 0 ) |
|
| 156 | 155 | neneqd | |- ( ( k + 1 ) e. NN -> -. ( k + 1 ) = 0 ) |
| 157 | 154 156 | syl | |- ( k e. NN0 -> -. ( k + 1 ) = 0 ) |
| 158 | 157 | iffalsed | |- ( k e. NN0 -> if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) = ( ( k + 1 ) - 1 ) ) |
| 159 | ovex | |- ( ( k + 1 ) - 1 ) e. _V |
|
| 160 | 158 159 | eqeltrdi | |- ( k e. NN0 -> if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) e. _V ) |
| 161 | 150 153 21 160 | fvmptd3 | |- ( k e. NN0 -> ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) = if ( ( k + 1 ) = 0 , C , ( ( k + 1 ) - 1 ) ) ) |
| 162 | nn0cn | |- ( k e. NN0 -> k e. CC ) |
|
| 163 | ax-1cn | |- 1 e. CC |
|
| 164 | pncan | |- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
|
| 165 | 162 163 164 | sylancl | |- ( k e. NN0 -> ( ( k + 1 ) - 1 ) = k ) |
| 166 | 161 158 165 | 3eqtrd | |- ( k e. NN0 -> ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) = k ) |
| 167 | 166 | oveq2d | |- ( k e. NN0 -> ( ( S ` k ) T ( ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ` ( k + 1 ) ) ) = ( ( S ` k ) T k ) ) |
| 168 | 149 167 | eqtrd | |- ( k e. NN0 -> ( S ` ( k + 1 ) ) = ( ( S ` k ) T k ) ) |
| 169 | 168 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( S ` ( k + 1 ) ) = ( ( S ` k ) T k ) ) |
| 170 | 169 | oveq1d | |- ( ( ph /\ k e. NN0 ) -> ( ( S ` ( k + 1 ) ) D ( S ` k ) ) = ( ( ( S ` k ) T k ) D ( S ` k ) ) ) |
| 171 | metsym | |- ( ( D e. ( Met ` X ) /\ ( ( S ` k ) T k ) e. X /\ ( S ` k ) e. X ) -> ( ( ( S ` k ) T k ) D ( S ` k ) ) = ( ( S ` k ) D ( ( S ` k ) T k ) ) ) |
|
| 172 | 137 87 41 171 | syl3anc | |- ( ( ph /\ k e. NN0 ) -> ( ( ( S ` k ) T k ) D ( S ` k ) ) = ( ( S ` k ) D ( ( S ` k ) T k ) ) ) |
| 173 | 170 172 | eqtrd | |- ( ( ph /\ k e. NN0 ) -> ( ( S ` ( k + 1 ) ) D ( S ` k ) ) = ( ( S ` k ) D ( ( S ` k ) T k ) ) ) |
| 174 | 3cn | |- 3 e. CC |
|
| 175 | 174 | 2timesi | |- ( 2 x. 3 ) = ( 3 + 3 ) |
| 176 | 175 | oveq1i | |- ( ( 2 x. 3 ) - 3 ) = ( ( 3 + 3 ) - 3 ) |
| 177 | 174 174 | pncan3oi | |- ( ( 3 + 3 ) - 3 ) = 3 |
| 178 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 179 | 176 177 178 | 3eqtri | |- ( ( 2 x. 3 ) - 3 ) = ( 2 + 1 ) |
| 180 | 179 | oveq1i | |- ( ( ( 2 x. 3 ) - 3 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( 2 + 1 ) / ( 2 ^ ( k + 1 ) ) ) |
| 181 | rpcn | |- ( ( 2 ^ ( k + 1 ) ) e. RR+ -> ( 2 ^ ( k + 1 ) ) e. CC ) |
|
| 182 | rpne0 | |- ( ( 2 ^ ( k + 1 ) ) e. RR+ -> ( 2 ^ ( k + 1 ) ) =/= 0 ) |
|
| 183 | 2cn | |- 2 e. CC |
|
| 184 | 183 174 | mulcli | |- ( 2 x. 3 ) e. CC |
| 185 | divsubdir | |- ( ( ( 2 x. 3 ) e. CC /\ 3 e. CC /\ ( ( 2 ^ ( k + 1 ) ) e. CC /\ ( 2 ^ ( k + 1 ) ) =/= 0 ) ) -> ( ( ( 2 x. 3 ) - 3 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
|
| 186 | 184 174 185 | mp3an12 | |- ( ( ( 2 ^ ( k + 1 ) ) e. CC /\ ( 2 ^ ( k + 1 ) ) =/= 0 ) -> ( ( ( 2 x. 3 ) - 3 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 187 | 181 182 186 | syl2anc | |- ( ( 2 ^ ( k + 1 ) ) e. RR+ -> ( ( ( 2 x. 3 ) - 3 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 188 | 46 187 | syl | |- ( k e. NN0 -> ( ( ( 2 x. 3 ) - 3 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 189 | divdir | |- ( ( 2 e. CC /\ 1 e. CC /\ ( ( 2 ^ ( k + 1 ) ) e. CC /\ ( 2 ^ ( k + 1 ) ) =/= 0 ) ) -> ( ( 2 + 1 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( 2 / ( 2 ^ ( k + 1 ) ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
|
| 190 | 183 163 189 | mp3an12 | |- ( ( ( 2 ^ ( k + 1 ) ) e. CC /\ ( 2 ^ ( k + 1 ) ) =/= 0 ) -> ( ( 2 + 1 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( 2 / ( 2 ^ ( k + 1 ) ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 191 | 181 182 190 | syl2anc | |- ( ( 2 ^ ( k + 1 ) ) e. RR+ -> ( ( 2 + 1 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( 2 / ( 2 ^ ( k + 1 ) ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 192 | 46 191 | syl | |- ( k e. NN0 -> ( ( 2 + 1 ) / ( 2 ^ ( k + 1 ) ) ) = ( ( 2 / ( 2 ^ ( k + 1 ) ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 193 | 180 188 192 | 3eqtr3a | |- ( k e. NN0 -> ( ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( 2 / ( 2 ^ ( k + 1 ) ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 194 | rpcn | |- ( ( 2 ^ k ) e. RR+ -> ( 2 ^ k ) e. CC ) |
|
| 195 | rpne0 | |- ( ( 2 ^ k ) e. RR+ -> ( 2 ^ k ) =/= 0 ) |
|
| 196 | 2cnne0 | |- ( 2 e. CC /\ 2 =/= 0 ) |
|
| 197 | divcan5 | |- ( ( 3 e. CC /\ ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. 3 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 3 / ( 2 ^ k ) ) ) |
|
| 198 | 174 196 197 | mp3an13 | |- ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) -> ( ( 2 x. 3 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 3 / ( 2 ^ k ) ) ) |
| 199 | 194 195 198 | syl2anc | |- ( ( 2 ^ k ) e. RR+ -> ( ( 2 x. 3 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 3 / ( 2 ^ k ) ) ) |
| 200 | 52 199 | syl | |- ( k e. NN0 -> ( ( 2 x. 3 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 3 / ( 2 ^ k ) ) ) |
| 201 | 52 194 | syl | |- ( k e. NN0 -> ( 2 ^ k ) e. CC ) |
| 202 | mulcom | |- ( ( 2 e. CC /\ ( 2 ^ k ) e. CC ) -> ( 2 x. ( 2 ^ k ) ) = ( ( 2 ^ k ) x. 2 ) ) |
|
| 203 | 183 201 202 | sylancr | |- ( k e. NN0 -> ( 2 x. ( 2 ^ k ) ) = ( ( 2 ^ k ) x. 2 ) ) |
| 204 | expp1 | |- ( ( 2 e. CC /\ k e. NN0 ) -> ( 2 ^ ( k + 1 ) ) = ( ( 2 ^ k ) x. 2 ) ) |
|
| 205 | 183 204 | mpan | |- ( k e. NN0 -> ( 2 ^ ( k + 1 ) ) = ( ( 2 ^ k ) x. 2 ) ) |
| 206 | 203 205 | eqtr4d | |- ( k e. NN0 -> ( 2 x. ( 2 ^ k ) ) = ( 2 ^ ( k + 1 ) ) ) |
| 207 | 206 | oveq2d | |- ( k e. NN0 -> ( ( 2 x. 3 ) / ( 2 x. ( 2 ^ k ) ) ) = ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) ) |
| 208 | 200 207 | eqtr3d | |- ( k e. NN0 -> ( 3 / ( 2 ^ k ) ) = ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) ) |
| 209 | 208 | oveq1d | |- ( k e. NN0 -> ( ( 3 / ( 2 ^ k ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( ( 2 x. 3 ) / ( 2 ^ ( k + 1 ) ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 210 | divcan5 | |- ( ( 1 e. CC /\ ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( 2 x. 1 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 1 / ( 2 ^ k ) ) ) |
|
| 211 | 163 196 210 | mp3an13 | |- ( ( ( 2 ^ k ) e. CC /\ ( 2 ^ k ) =/= 0 ) -> ( ( 2 x. 1 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 1 / ( 2 ^ k ) ) ) |
| 212 | 194 195 211 | syl2anc | |- ( ( 2 ^ k ) e. RR+ -> ( ( 2 x. 1 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 1 / ( 2 ^ k ) ) ) |
| 213 | 52 212 | syl | |- ( k e. NN0 -> ( ( 2 x. 1 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 1 / ( 2 ^ k ) ) ) |
| 214 | 2t1e2 | |- ( 2 x. 1 ) = 2 |
|
| 215 | 214 | a1i | |- ( k e. NN0 -> ( 2 x. 1 ) = 2 ) |
| 216 | 215 206 | oveq12d | |- ( k e. NN0 -> ( ( 2 x. 1 ) / ( 2 x. ( 2 ^ k ) ) ) = ( 2 / ( 2 ^ ( k + 1 ) ) ) ) |
| 217 | 213 216 | eqtr3d | |- ( k e. NN0 -> ( 1 / ( 2 ^ k ) ) = ( 2 / ( 2 ^ ( k + 1 ) ) ) ) |
| 218 | 217 | oveq1d | |- ( k e. NN0 -> ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( 2 / ( 2 ^ ( k + 1 ) ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 219 | 193 209 218 | 3eqtr4d | |- ( k e. NN0 -> ( ( 3 / ( 2 ^ k ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 220 | 219 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( ( 3 / ( 2 ^ k ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( 1 / ( 2 ^ k ) ) + ( 1 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 221 | 142 173 220 | 3brtr4d | |- ( ( ph /\ k e. NN0 ) -> ( ( S ` ( k + 1 ) ) D ( S ` k ) ) <_ ( ( 3 / ( 2 ^ k ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 222 | blss2 | |- ( ( ( D e. ( *Met ` X ) /\ ( S ` ( k + 1 ) ) e. X /\ ( S ` k ) e. X ) /\ ( ( 3 / ( 2 ^ ( k + 1 ) ) ) e. RR /\ ( 3 / ( 2 ^ k ) ) e. RR /\ ( ( S ` ( k + 1 ) ) D ( S ` k ) ) <_ ( ( 3 / ( 2 ^ k ) ) - ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) ) -> ( ( S ` ( k + 1 ) ) ( ball ` D ) ( 3 / ( 2 ^ ( k + 1 ) ) ) ) C_ ( ( S ` k ) ( ball ` D ) ( 3 / ( 2 ^ k ) ) ) ) |
|
| 223 | 17 32 41 49 55 221 222 | syl33anc | |- ( ( ph /\ k e. NN0 ) -> ( ( S ` ( k + 1 ) ) ( ball ` D ) ( 3 / ( 2 ^ ( k + 1 ) ) ) ) C_ ( ( S ` k ) ( ball ` D ) ( 3 / ( 2 ^ k ) ) ) ) |
| 224 | 12 223 | sylan2 | |- ( ( ph /\ k e. NN ) -> ( ( S ` ( k + 1 ) ) ( ball ` D ) ( 3 / ( 2 ^ ( k + 1 ) ) ) ) C_ ( ( S ` k ) ( ball ` D ) ( 3 / ( 2 ^ k ) ) ) ) |
| 225 | peano2nn | |- ( k e. NN -> ( k + 1 ) e. NN ) |
|
| 226 | fveq2 | |- ( n = ( k + 1 ) -> ( S ` n ) = ( S ` ( k + 1 ) ) ) |
|
| 227 | oveq2 | |- ( n = ( k + 1 ) -> ( 2 ^ n ) = ( 2 ^ ( k + 1 ) ) ) |
|
| 228 | 227 | oveq2d | |- ( n = ( k + 1 ) -> ( 3 / ( 2 ^ n ) ) = ( 3 / ( 2 ^ ( k + 1 ) ) ) ) |
| 229 | 226 228 | opeq12d | |- ( n = ( k + 1 ) -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. = <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. ) |
| 230 | opex | |- <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. e. _V |
|
| 231 | 229 11 230 | fvmpt | |- ( ( k + 1 ) e. NN -> ( M ` ( k + 1 ) ) = <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. ) |
| 232 | 225 231 | syl | |- ( k e. NN -> ( M ` ( k + 1 ) ) = <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. ) |
| 233 | 232 | adantl | |- ( ( ph /\ k e. NN ) -> ( M ` ( k + 1 ) ) = <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. ) |
| 234 | 233 | fveq2d | |- ( ( ph /\ k e. NN ) -> ( ( ball ` D ) ` ( M ` ( k + 1 ) ) ) = ( ( ball ` D ) ` <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. ) ) |
| 235 | df-ov | |- ( ( S ` ( k + 1 ) ) ( ball ` D ) ( 3 / ( 2 ^ ( k + 1 ) ) ) ) = ( ( ball ` D ) ` <. ( S ` ( k + 1 ) ) , ( 3 / ( 2 ^ ( k + 1 ) ) ) >. ) |
|
| 236 | 234 235 | eqtr4di | |- ( ( ph /\ k e. NN ) -> ( ( ball ` D ) ` ( M ` ( k + 1 ) ) ) = ( ( S ` ( k + 1 ) ) ( ball ` D ) ( 3 / ( 2 ^ ( k + 1 ) ) ) ) ) |
| 237 | fveq2 | |- ( n = k -> ( S ` n ) = ( S ` k ) ) |
|
| 238 | oveq2 | |- ( n = k -> ( 2 ^ n ) = ( 2 ^ k ) ) |
|
| 239 | 238 | oveq2d | |- ( n = k -> ( 3 / ( 2 ^ n ) ) = ( 3 / ( 2 ^ k ) ) ) |
| 240 | 237 239 | opeq12d | |- ( n = k -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. = <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) |
| 241 | opex | |- <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. e. _V |
|
| 242 | 240 11 241 | fvmpt | |- ( k e. NN -> ( M ` k ) = <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) |
| 243 | 242 | fveq2d | |- ( k e. NN -> ( ( ball ` D ) ` ( M ` k ) ) = ( ( ball ` D ) ` <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) ) |
| 244 | df-ov | |- ( ( S ` k ) ( ball ` D ) ( 3 / ( 2 ^ k ) ) ) = ( ( ball ` D ) ` <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) |
|
| 245 | 243 244 | eqtr4di | |- ( k e. NN -> ( ( ball ` D ) ` ( M ` k ) ) = ( ( S ` k ) ( ball ` D ) ( 3 / ( 2 ^ k ) ) ) ) |
| 246 | 245 | adantl | |- ( ( ph /\ k e. NN ) -> ( ( ball ` D ) ` ( M ` k ) ) = ( ( S ` k ) ( ball ` D ) ( 3 / ( 2 ^ k ) ) ) ) |
| 247 | 224 236 246 | 3sstr4d | |- ( ( ph /\ k e. NN ) -> ( ( ball ` D ) ` ( M ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( M ` k ) ) ) |
| 248 | 247 | ralrimiva | |- ( ph -> A. k e. NN ( ( ball ` D ) ` ( M ` ( k + 1 ) ) ) C_ ( ( ball ` D ) ` ( M ` k ) ) ) |