This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for indexed union. (Contributed by NM, 22-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iuneq2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2iun | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ) | |
| 2 | ss2iun | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 3 | 1 2 | anim12i | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) → ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 4 | eqss | ⊢ ( 𝐵 = 𝐶 ↔ ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) | |
| 5 | 4 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ) |
| 6 | r19.26 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ) | |
| 7 | 5 6 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ⊆ 𝐵 ) ) |
| 8 | eqss | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) | |
| 9 | 3 7 8 | 3imtr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶 ) |