This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . The last remaining piece of the proof is to find an element C such that C G 0 , i.e. C is an element of ( F0 ) that has no finite subcover, which is true by heiborlem1 , since ( F0 ) is a finite cover of X , which has no finite subcover. Thus, the rest of the proof follows to a contradiction, and thus there must be a finite subcover of U that covers X , i.e. X is compact. (Contributed by Jeff Madsen, 22-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | ||
| heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | ||
| heibor.5 | ⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | ||
| heibor.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | ||
| heibor.7 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) | ||
| heibor.8 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) | ||
| Assertion | heiborlem10 | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | |
| 3 | heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | |
| 4 | heibor.5 | ⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | |
| 5 | heibor.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 6 | heibor.7 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) | |
| 7 | heibor.8 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) | |
| 8 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 9 | inss2 | ⊢ ( 𝒫 𝑋 ∩ Fin ) ⊆ Fin | |
| 10 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ∧ 0 ∈ ℕ0 ) → ( 𝐹 ‘ 0 ) ∈ ( 𝒫 𝑋 ∩ Fin ) ) | |
| 11 | 9 10 | sselid | ⊢ ( ( 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ∧ 0 ∈ ℕ0 ) → ( 𝐹 ‘ 0 ) ∈ Fin ) |
| 12 | 6 8 11 | sylancl | ⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) ∈ Fin ) |
| 13 | fveq2 | ⊢ ( 𝑛 = 0 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 0 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑛 = 0 → ( 𝑦 𝐵 𝑛 ) = ( 𝑦 𝐵 0 ) ) | |
| 15 | 13 14 | iuneq12d | ⊢ ( 𝑛 = 0 → ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) = ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) |
| 16 | 15 | eqeq2d | ⊢ ( 𝑛 = 0 → ( 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ↔ 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) ) |
| 17 | 16 | rspccva | ⊢ ( ( ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ∧ 0 ∈ ℕ0 ) → 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) |
| 18 | 7 8 17 | sylancl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) |
| 19 | eqimss | ⊢ ( 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) → 𝑋 ⊆ ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → 𝑋 ⊆ ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) |
| 21 | ovex | ⊢ ( 𝑦 𝐵 0 ) ∈ V | |
| 22 | 1 2 21 | heiborlem1 | ⊢ ( ( ( 𝐹 ‘ 0 ) ∈ Fin ∧ 𝑋 ⊆ ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ∧ 𝑋 ∈ 𝐾 ) → ∃ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ∈ 𝐾 ) |
| 23 | oveq1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 𝐵 0 ) = ( 𝑥 𝐵 0 ) ) | |
| 24 | 23 | eleq1d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑦 𝐵 0 ) ∈ 𝐾 ↔ ( 𝑥 𝐵 0 ) ∈ 𝐾 ) ) |
| 25 | 24 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ∈ 𝐾 ↔ ∃ 𝑥 ∈ ( 𝐹 ‘ 0 ) ( 𝑥 𝐵 0 ) ∈ 𝐾 ) |
| 26 | 22 25 | sylib | ⊢ ( ( ( 𝐹 ‘ 0 ) ∈ Fin ∧ 𝑋 ⊆ ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ∧ 𝑋 ∈ 𝐾 ) → ∃ 𝑥 ∈ ( 𝐹 ‘ 0 ) ( 𝑥 𝐵 0 ) ∈ 𝐾 ) |
| 27 | 26 | 3expia | ⊢ ( ( ( 𝐹 ‘ 0 ) ∈ Fin ∧ 𝑋 ⊆ ∪ 𝑦 ∈ ( 𝐹 ‘ 0 ) ( 𝑦 𝐵 0 ) ) → ( 𝑋 ∈ 𝐾 → ∃ 𝑥 ∈ ( 𝐹 ‘ 0 ) ( 𝑥 𝐵 0 ) ∈ 𝐾 ) ) |
| 28 | 12 20 27 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐾 → ∃ 𝑥 ∈ ( 𝐹 ‘ 0 ) ( 𝑥 𝐵 0 ) ∈ 𝐾 ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( 𝑋 ∈ 𝐾 → ∃ 𝑥 ∈ ( 𝐹 ‘ 0 ) ( 𝑥 𝐵 0 ) ∈ 𝐾 ) ) |
| 30 | vex | ⊢ 𝑥 ∈ V | |
| 31 | c0ex | ⊢ 0 ∈ V | |
| 32 | 1 2 3 30 31 | heiborlem2 | ⊢ ( 𝑥 𝐺 0 ↔ ( 0 ∈ ℕ0 ∧ 𝑥 ∈ ( 𝐹 ‘ 0 ) ∧ ( 𝑥 𝐵 0 ) ∈ 𝐾 ) ) |
| 33 | 1 2 3 4 5 6 7 | heiborlem3 | ⊢ ( 𝜑 → ∃ 𝑔 ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) |
| 34 | 33 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑥 𝐺 0 ) → ∃ 𝑔 ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) |
| 35 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 36 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
| 37 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) |
| 38 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) | |
| 39 | fveq2 | ⊢ ( 𝑥 = 𝑡 → ( 𝑔 ‘ 𝑥 ) = ( 𝑔 ‘ 𝑡 ) ) | |
| 40 | fveq2 | ⊢ ( 𝑥 = 𝑡 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑡 ) ) | |
| 41 | 40 | oveq1d | ⊢ ( 𝑥 = 𝑡 → ( ( 2nd ‘ 𝑥 ) + 1 ) = ( ( 2nd ‘ 𝑡 ) + 1 ) ) |
| 42 | 39 41 | breq12d | ⊢ ( 𝑥 = 𝑡 → ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ↔ ( 𝑔 ‘ 𝑡 ) 𝐺 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) |
| 43 | fveq2 | ⊢ ( 𝑥 = 𝑡 → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑡 ) ) | |
| 44 | 39 41 | oveq12d | ⊢ ( 𝑥 = 𝑡 → ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) = ( ( 𝑔 ‘ 𝑡 ) 𝐵 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) |
| 45 | 43 44 | ineq12d | ⊢ ( 𝑥 = 𝑡 → ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) = ( ( 𝐵 ‘ 𝑡 ) ∩ ( ( 𝑔 ‘ 𝑡 ) 𝐵 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) ) |
| 46 | 45 | eleq1d | ⊢ ( 𝑥 = 𝑡 → ( ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ↔ ( ( 𝐵 ‘ 𝑡 ) ∩ ( ( 𝑔 ‘ 𝑡 ) 𝐵 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) ∈ 𝐾 ) ) |
| 47 | 42 46 | anbi12d | ⊢ ( 𝑥 = 𝑡 → ( ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ↔ ( ( 𝑔 ‘ 𝑡 ) 𝐺 ( ( 2nd ‘ 𝑡 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑡 ) ∩ ( ( 𝑔 ‘ 𝑡 ) 𝐵 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) ∈ 𝐾 ) ) ) |
| 48 | 47 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ↔ ∀ 𝑡 ∈ 𝐺 ( ( 𝑔 ‘ 𝑡 ) 𝐺 ( ( 2nd ‘ 𝑡 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑡 ) ∩ ( ( 𝑔 ‘ 𝑡 ) 𝐵 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) ∈ 𝐾 ) ) |
| 49 | 38 48 | sylib | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → ∀ 𝑡 ∈ 𝐺 ( ( 𝑔 ‘ 𝑡 ) 𝐺 ( ( 2nd ‘ 𝑡 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑡 ) ∩ ( ( 𝑔 ‘ 𝑡 ) 𝐵 ( ( 2nd ‘ 𝑡 ) + 1 ) ) ) ∈ 𝐾 ) ) |
| 50 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → 𝑥 𝐺 0 ) | |
| 51 | eqeq1 | ⊢ ( 𝑔 = 𝑚 → ( 𝑔 = 0 ↔ 𝑚 = 0 ) ) | |
| 52 | oveq1 | ⊢ ( 𝑔 = 𝑚 → ( 𝑔 − 1 ) = ( 𝑚 − 1 ) ) | |
| 53 | 51 52 | ifbieq2d | ⊢ ( 𝑔 = 𝑚 → if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) = if ( 𝑚 = 0 , 𝑥 , ( 𝑚 − 1 ) ) ) |
| 54 | 53 | cbvmptv | ⊢ ( 𝑔 ∈ ℕ0 ↦ if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝑥 , ( 𝑚 − 1 ) ) ) |
| 55 | seqeq3 | ⊢ ( ( 𝑔 ∈ ℕ0 ↦ if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝑥 , ( 𝑚 − 1 ) ) ) → seq 0 ( 𝑔 , ( 𝑔 ∈ ℕ0 ↦ if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) ) ) = seq 0 ( 𝑔 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝑥 , ( 𝑚 − 1 ) ) ) ) ) | |
| 56 | 54 55 | ax-mp | ⊢ seq 0 ( 𝑔 , ( 𝑔 ∈ ℕ0 ↦ if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) ) ) = seq 0 ( 𝑔 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝑥 , ( 𝑚 − 1 ) ) ) ) |
| 57 | eqid | ⊢ ( 𝑛 ∈ ℕ ↦ 〈 ( seq 0 ( 𝑔 , ( 𝑔 ∈ ℕ0 ↦ if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) ) ) ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) = ( 𝑛 ∈ ℕ ↦ 〈 ( seq 0 ( 𝑔 , ( 𝑔 ∈ ℕ0 ↦ if ( 𝑔 = 0 , 𝑥 , ( 𝑔 − 1 ) ) ) ) ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) | |
| 58 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → 𝑈 ⊆ 𝐽 ) | |
| 59 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 60 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 61 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 62 | 5 59 60 61 | 4syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 63 | 62 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → 𝑋 = ∪ 𝐽 ) |
| 64 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ∪ 𝐽 = ∪ 𝑈 ) | |
| 65 | 63 64 | eqtr2d | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ∪ 𝑈 = 𝑋 ) |
| 66 | 65 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → ∪ 𝑈 = 𝑋 ) |
| 67 | 1 2 3 4 35 36 37 49 50 56 57 58 66 | heiborlem9 | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 𝑥 𝐺 0 ∧ ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) ) → ¬ 𝑋 ∈ 𝐾 ) |
| 68 | 67 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑥 𝐺 0 ) → ( ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) → ¬ 𝑋 ∈ 𝐾 ) ) |
| 69 | 68 | exlimdv | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑥 𝐺 0 ) → ( ∃ 𝑔 ∀ 𝑥 ∈ 𝐺 ( ( 𝑔 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑔 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) → ¬ 𝑋 ∈ 𝐾 ) ) |
| 70 | 34 69 | mpd | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑥 𝐺 0 ) → ¬ 𝑋 ∈ 𝐾 ) |
| 71 | 32 70 | sylan2br | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑥 ∈ ( 𝐹 ‘ 0 ) ∧ ( 𝑥 𝐵 0 ) ∈ 𝐾 ) ) → ¬ 𝑋 ∈ 𝐾 ) |
| 72 | 71 | 3exp2 | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( 0 ∈ ℕ0 → ( 𝑥 ∈ ( 𝐹 ‘ 0 ) → ( ( 𝑥 𝐵 0 ) ∈ 𝐾 → ¬ 𝑋 ∈ 𝐾 ) ) ) ) |
| 73 | 8 72 | mpi | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( 𝑥 ∈ ( 𝐹 ‘ 0 ) → ( ( 𝑥 𝐵 0 ) ∈ 𝐾 → ¬ 𝑋 ∈ 𝐾 ) ) ) |
| 74 | 73 | rexlimdv | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( ∃ 𝑥 ∈ ( 𝐹 ‘ 0 ) ( 𝑥 𝐵 0 ) ∈ 𝐾 → ¬ 𝑋 ∈ 𝐾 ) ) |
| 75 | 29 74 | syld | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( 𝑋 ∈ 𝐾 → ¬ 𝑋 ∈ 𝐾 ) ) |
| 76 | 75 | pm2.01d | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ¬ 𝑋 ∈ 𝐾 ) |
| 77 | elfvdm | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝑋 ∈ dom CMet ) | |
| 78 | sseq1 | ⊢ ( 𝑢 = 𝑋 → ( 𝑢 ⊆ ∪ 𝑣 ↔ 𝑋 ⊆ ∪ 𝑣 ) ) | |
| 79 | 78 | rexbidv | ⊢ ( 𝑢 = 𝑋 → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ) ) |
| 80 | 79 | notbid | ⊢ ( 𝑢 = 𝑋 → ( ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ) ) |
| 81 | 80 2 | elab2g | ⊢ ( 𝑋 ∈ dom CMet → ( 𝑋 ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ) ) |
| 82 | 5 77 81 | 3syl | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ) ) |
| 83 | 82 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( 𝑋 ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ) ) |
| 84 | 83 | con2bid | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ↔ ¬ 𝑋 ∈ 𝐾 ) ) |
| 85 | 76 84 | mpbird | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ) |
| 86 | 62 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → 𝑋 = ∪ 𝐽 ) |
| 87 | 86 | sseq1d | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝑋 ⊆ ∪ 𝑣 ↔ ∪ 𝐽 ⊆ ∪ 𝑣 ) ) |
| 88 | inss1 | ⊢ ( 𝒫 𝑈 ∩ Fin ) ⊆ 𝒫 𝑈 | |
| 89 | 88 | sseli | ⊢ ( 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) → 𝑣 ∈ 𝒫 𝑈 ) |
| 90 | 89 | elpwid | ⊢ ( 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) → 𝑣 ⊆ 𝑈 ) |
| 91 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → 𝑈 ⊆ 𝐽 ) | |
| 92 | sstr | ⊢ ( ( 𝑣 ⊆ 𝑈 ∧ 𝑈 ⊆ 𝐽 ) → 𝑣 ⊆ 𝐽 ) | |
| 93 | 92 | unissd | ⊢ ( ( 𝑣 ⊆ 𝑈 ∧ 𝑈 ⊆ 𝐽 ) → ∪ 𝑣 ⊆ ∪ 𝐽 ) |
| 94 | 90 91 93 | syl2anr | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ∪ 𝑣 ⊆ ∪ 𝐽 ) |
| 95 | 94 | biantrud | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( ∪ 𝐽 ⊆ ∪ 𝑣 ↔ ( ∪ 𝐽 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ⊆ ∪ 𝐽 ) ) ) |
| 96 | eqss | ⊢ ( ∪ 𝐽 = ∪ 𝑣 ↔ ( ∪ 𝐽 ⊆ ∪ 𝑣 ∧ ∪ 𝑣 ⊆ ∪ 𝐽 ) ) | |
| 97 | 95 96 | bitr4di | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( ∪ 𝐽 ⊆ ∪ 𝑣 ↔ ∪ 𝐽 = ∪ 𝑣 ) ) |
| 98 | 87 97 | bitrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) ∧ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ) → ( 𝑋 ⊆ ∪ 𝑣 ↔ ∪ 𝐽 = ∪ 𝑣 ) ) |
| 99 | 98 | rexbidva | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑋 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) |
| 100 | 85 99 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑈 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑈 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) |