This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . We work with a fixed open cover U throughout. The set K is the set of all subsets of X that admit no finite subcover of U . (We wish to prove that K is empty.) If a set C has no finite subcover, then any finite cover of C must contain a set that also has no finite subcover. (Contributed by Jeff Madsen, 23-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | ||
| heiborlem1.4 | ⊢ 𝐵 ∈ V | ||
| Assertion | heiborlem1 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐾 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | |
| 3 | heiborlem1.4 | ⊢ 𝐵 ∈ V | |
| 4 | sseq1 | ⊢ ( 𝑢 = 𝐵 → ( 𝑢 ⊆ ∪ 𝑣 ↔ 𝐵 ⊆ ∪ 𝑣 ) ) | |
| 5 | 4 | rexbidv | ⊢ ( 𝑢 = 𝐵 → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ) ) |
| 6 | 5 | notbid | ⊢ ( 𝑢 = 𝐵 → ( ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ) ) |
| 7 | 3 6 2 | elab2 | ⊢ ( 𝐵 ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ) |
| 8 | 7 | con2bii | ⊢ ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ↔ ¬ 𝐵 ∈ 𝐾 ) |
| 9 | 8 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 ∈ 𝐾 ) |
| 10 | ralnex | ⊢ ( ∀ 𝑥 ∈ 𝐴 ¬ 𝐵 ∈ 𝐾 ↔ ¬ ∃ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐾 ) | |
| 11 | 9 10 | bitr2i | ⊢ ( ¬ ∃ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐾 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ) |
| 12 | unieq | ⊢ ( 𝑣 = ( 𝑡 ‘ 𝑥 ) → ∪ 𝑣 = ∪ ( 𝑡 ‘ 𝑥 ) ) | |
| 13 | 12 | sseq2d | ⊢ ( 𝑣 = ( 𝑡 ‘ 𝑥 ) → ( 𝐵 ⊆ ∪ 𝑣 ↔ 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) |
| 14 | 13 | ac6sfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 ) → ∃ 𝑡 ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) |
| 15 | 14 | ex | ⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 → ∃ 𝑡 ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 → ∃ 𝑡 ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) ) |
| 17 | sseq1 | ⊢ ( 𝑢 = 𝐶 → ( 𝑢 ⊆ ∪ 𝑣 ↔ 𝐶 ⊆ ∪ 𝑣 ) ) | |
| 18 | 17 | rexbidv | ⊢ ( 𝑢 = 𝐶 → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐶 ⊆ ∪ 𝑣 ) ) |
| 19 | 18 | notbid | ⊢ ( 𝑢 = 𝐶 → ( ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐶 ⊆ ∪ 𝑣 ) ) |
| 20 | 19 2 | elab2g | ⊢ ( 𝐶 ∈ 𝐾 → ( 𝐶 ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐶 ⊆ ∪ 𝑣 ) ) |
| 21 | 20 | ibi | ⊢ ( 𝐶 ∈ 𝐾 → ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐶 ⊆ ∪ 𝑣 ) |
| 22 | frn | ⊢ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) → ran 𝑡 ⊆ ( 𝒫 𝑈 ∩ Fin ) ) | |
| 23 | 22 | ad2antrl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ran 𝑡 ⊆ ( 𝒫 𝑈 ∩ Fin ) ) |
| 24 | inss1 | ⊢ ( 𝒫 𝑈 ∩ Fin ) ⊆ 𝒫 𝑈 | |
| 25 | 23 24 | sstrdi | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ran 𝑡 ⊆ 𝒫 𝑈 ) |
| 26 | sspwuni | ⊢ ( ran 𝑡 ⊆ 𝒫 𝑈 ↔ ∪ ran 𝑡 ⊆ 𝑈 ) | |
| 27 | 25 26 | sylib | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ ran 𝑡 ⊆ 𝑈 ) |
| 28 | vex | ⊢ 𝑡 ∈ V | |
| 29 | 28 | rnex | ⊢ ran 𝑡 ∈ V |
| 30 | 29 | uniex | ⊢ ∪ ran 𝑡 ∈ V |
| 31 | 30 | elpw | ⊢ ( ∪ ran 𝑡 ∈ 𝒫 𝑈 ↔ ∪ ran 𝑡 ⊆ 𝑈 ) |
| 32 | 27 31 | sylibr | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ ran 𝑡 ∈ 𝒫 𝑈 ) |
| 33 | ffn | ⊢ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) → 𝑡 Fn 𝐴 ) | |
| 34 | 33 | ad2antrl | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → 𝑡 Fn 𝐴 ) |
| 35 | dffn4 | ⊢ ( 𝑡 Fn 𝐴 ↔ 𝑡 : 𝐴 –onto→ ran 𝑡 ) | |
| 36 | 34 35 | sylib | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → 𝑡 : 𝐴 –onto→ ran 𝑡 ) |
| 37 | fofi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑡 : 𝐴 –onto→ ran 𝑡 ) → ran 𝑡 ∈ Fin ) | |
| 38 | 36 37 | syldan | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ran 𝑡 ∈ Fin ) |
| 39 | inss2 | ⊢ ( 𝒫 𝑈 ∩ Fin ) ⊆ Fin | |
| 40 | 23 39 | sstrdi | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ran 𝑡 ⊆ Fin ) |
| 41 | unifi | ⊢ ( ( ran 𝑡 ∈ Fin ∧ ran 𝑡 ⊆ Fin ) → ∪ ran 𝑡 ∈ Fin ) | |
| 42 | 38 40 41 | syl2anc | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ ran 𝑡 ∈ Fin ) |
| 43 | 32 42 | elind | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ ran 𝑡 ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
| 44 | 43 | adantlr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ ran 𝑡 ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
| 45 | simplr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) | |
| 46 | fnfvelrn | ⊢ ( ( 𝑡 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑡 ‘ 𝑥 ) ∈ ran 𝑡 ) | |
| 47 | 33 46 | sylan | ⊢ ( ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑡 ‘ 𝑥 ) ∈ ran 𝑡 ) |
| 48 | 47 | adantll | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝑡 ‘ 𝑥 ) ∈ ran 𝑡 ) |
| 49 | elssuni | ⊢ ( ( 𝑡 ‘ 𝑥 ) ∈ ran 𝑡 → ( 𝑡 ‘ 𝑥 ) ⊆ ∪ ran 𝑡 ) | |
| 50 | uniss | ⊢ ( ( 𝑡 ‘ 𝑥 ) ⊆ ∪ ran 𝑡 → ∪ ( 𝑡 ‘ 𝑥 ) ⊆ ∪ ∪ ran 𝑡 ) | |
| 51 | 48 49 50 | 3syl | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) → ∪ ( 𝑡 ‘ 𝑥 ) ⊆ ∪ ∪ ran 𝑡 ) |
| 52 | sstr2 | ⊢ ( 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) → ( ∪ ( 𝑡 ‘ 𝑥 ) ⊆ ∪ ∪ ran 𝑡 → 𝐵 ⊆ ∪ ∪ ran 𝑡 ) ) | |
| 53 | 51 52 | syl5com | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) → 𝐵 ⊆ ∪ ∪ ran 𝑡 ) ) |
| 54 | 53 | ralimdva | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ∪ ran 𝑡 ) ) |
| 55 | 54 | impr | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ∪ ran 𝑡 ) |
| 56 | iunss | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ∪ ran 𝑡 ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ∪ ran 𝑡 ) | |
| 57 | 55 56 | sylibr | ⊢ ( ( 𝐴 ∈ Fin ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ∪ ran 𝑡 ) |
| 58 | 57 | adantlr | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ∪ ran 𝑡 ) |
| 59 | 45 58 | sstrd | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → 𝐶 ⊆ ∪ ∪ ran 𝑡 ) |
| 60 | unieq | ⊢ ( 𝑣 = ∪ ran 𝑡 → ∪ 𝑣 = ∪ ∪ ran 𝑡 ) | |
| 61 | 60 | sseq2d | ⊢ ( 𝑣 = ∪ ran 𝑡 → ( 𝐶 ⊆ ∪ 𝑣 ↔ 𝐶 ⊆ ∪ ∪ ran 𝑡 ) ) |
| 62 | 61 | rspcev | ⊢ ( ( ∪ ran 𝑡 ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ 𝐶 ⊆ ∪ ∪ ran 𝑡 ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐶 ⊆ ∪ 𝑣 ) |
| 63 | 44 59 62 | syl2anc | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐶 ⊆ ∪ 𝑣 ) |
| 64 | 21 63 | nsyl3 | ⊢ ( ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∧ ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) ) → ¬ 𝐶 ∈ 𝐾 ) |
| 65 | 64 | ex | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) → ¬ 𝐶 ∈ 𝐾 ) ) |
| 66 | 65 | exlimdv | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ∃ 𝑡 ( 𝑡 : 𝐴 ⟶ ( 𝒫 𝑈 ∩ Fin ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ ( 𝑡 ‘ 𝑥 ) ) → ¬ 𝐶 ∈ 𝐾 ) ) |
| 67 | 16 66 | syld | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝐵 ⊆ ∪ 𝑣 → ¬ 𝐶 ∈ 𝐾 ) ) |
| 68 | 11 67 | biimtrid | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( ¬ ∃ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐾 → ¬ 𝐶 ∈ 𝐾 ) ) |
| 69 | 68 | con4d | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ) → ( 𝐶 ∈ 𝐾 → ∃ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐾 ) ) |
| 70 | 69 | 3impia | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ 𝐶 ∈ 𝐾 ) → ∃ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐾 ) |