This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a totally bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | istotbnd | ⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | ⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 2 | elfvex | ⊢ ( 𝑀 ∈ ( Met ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) → 𝑋 ∈ V ) |
| 4 | fveq2 | ⊢ ( 𝑦 = 𝑋 → ( Met ‘ 𝑦 ) = ( Met ‘ 𝑋 ) ) | |
| 5 | eqeq2 | ⊢ ( 𝑦 = 𝑋 → ( ∪ 𝑣 = 𝑦 ↔ ∪ 𝑣 = 𝑋 ) ) | |
| 6 | rexeq | ⊢ ( 𝑦 = 𝑋 → ( ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ) | |
| 7 | 6 | ralbidv | ⊢ ( 𝑦 = 𝑋 → ( ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ↔ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ) |
| 8 | 5 7 | anbi12d | ⊢ ( 𝑦 = 𝑋 → ( ( ∪ 𝑣 = 𝑦 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ↔ ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ) ) |
| 9 | 8 | rexbidv | ⊢ ( 𝑦 = 𝑋 → ( ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑦 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ↔ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑦 = 𝑋 → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑦 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ) ) |
| 11 | 4 10 | rabeqbidv | ⊢ ( 𝑦 = 𝑋 → { 𝑚 ∈ ( Met ‘ 𝑦 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑦 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } = { 𝑚 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) |
| 12 | df-totbnd | ⊢ TotBnd = ( 𝑦 ∈ V ↦ { 𝑚 ∈ ( Met ‘ 𝑦 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑦 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑦 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) | |
| 13 | fvex | ⊢ ( Met ‘ 𝑋 ) ∈ V | |
| 14 | 13 | rabex | ⊢ { 𝑚 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } ∈ V |
| 15 | 11 12 14 | fvmpt | ⊢ ( 𝑋 ∈ V → ( TotBnd ‘ 𝑋 ) = { 𝑚 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) |
| 16 | 15 | eleq2d | ⊢ ( 𝑋 ∈ V → ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ 𝑀 ∈ { 𝑚 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } ) ) |
| 17 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( ball ‘ 𝑚 ) = ( ball ‘ 𝑀 ) ) | |
| 18 | 17 | oveqd | ⊢ ( 𝑚 = 𝑀 → ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) |
| 19 | 18 | eqeq2d | ⊢ ( 𝑚 = 𝑀 → ( 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ↔ 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 20 | 19 | rexbidv | ⊢ ( 𝑚 = 𝑀 → ( ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ↔ ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 21 | 20 | ralbidv | ⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ↔ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) |
| 22 | 21 | anbi2d | ⊢ ( 𝑚 = 𝑀 → ( ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ↔ ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 23 | 22 | rexbidv | ⊢ ( 𝑚 = 𝑀 → ( ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ↔ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 24 | 23 | ralbidv | ⊢ ( 𝑚 = 𝑀 → ( ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) ↔ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 25 | 24 | elrab | ⊢ ( 𝑀 ∈ { 𝑚 ∈ ( Met ‘ 𝑋 ) ∣ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑚 ) 𝑑 ) ) } ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |
| 26 | 16 25 | bitrdi | ⊢ ( 𝑋 ∈ V → ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) ) |
| 27 | 1 3 26 | pm5.21nii | ⊢ ( 𝑀 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝑀 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑑 ∈ ℝ+ ∃ 𝑣 ∈ Fin ( ∪ 𝑣 = 𝑋 ∧ ∀ 𝑏 ∈ 𝑣 ∃ 𝑥 ∈ 𝑋 𝑏 = ( 𝑥 ( ball ‘ 𝑀 ) 𝑑 ) ) ) ) |