This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite GCH-set is Dedekind-infinite. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchinf | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gchdju1 | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) | |
| 2 | 1 | ensymd | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
| 3 | isfin4-2 | ⊢ ( 𝐴 ∈ GCH → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) ) |
| 5 | isfin4p1 | ⊢ ( 𝐴 ∈ FinIV ↔ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) | |
| 6 | sdomnen | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) | |
| 7 | 5 6 | sylbi | ⊢ ( 𝐴 ∈ FinIV → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
| 8 | 4 7 | biimtrrdi | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ( ¬ ω ≼ 𝐴 → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) ) |
| 9 | 2 8 | mt4d | ⊢ ( ( 𝐴 ∈ GCH ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝐴 ) |