This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pwxpndom | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwxpndom2 | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) | |
| 2 | reldom | ⊢ Rel ≼ | |
| 3 | 2 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 4 | 3 3 | xpexd | ⊢ ( ω ≼ 𝐴 → ( 𝐴 × 𝐴 ) ∈ V ) |
| 5 | djudoml | ⊢ ( ( ( 𝐴 × 𝐴 ) ∈ V ∧ 𝐴 ∈ V ) → ( 𝐴 × 𝐴 ) ≼ ( ( 𝐴 × 𝐴 ) ⊔ 𝐴 ) ) | |
| 6 | 4 3 5 | syl2anc | ⊢ ( ω ≼ 𝐴 → ( 𝐴 × 𝐴 ) ≼ ( ( 𝐴 × 𝐴 ) ⊔ 𝐴 ) ) |
| 7 | djucomen | ⊢ ( ( ( 𝐴 × 𝐴 ) ∈ V ∧ 𝐴 ∈ V ) → ( ( 𝐴 × 𝐴 ) ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) | |
| 8 | 4 3 7 | syl2anc | ⊢ ( ω ≼ 𝐴 → ( ( 𝐴 × 𝐴 ) ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
| 9 | domentr | ⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( ( 𝐴 × 𝐴 ) ⊔ 𝐴 ) ∧ ( ( 𝐴 × 𝐴 ) ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) → ( 𝐴 × 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) | |
| 10 | 6 8 9 | syl2anc | ⊢ ( ω ≼ 𝐴 → ( 𝐴 × 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
| 11 | domtr | ⊢ ( ( 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) | |
| 12 | 11 | expcom | ⊢ ( ( 𝐴 × 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) → ( 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) ) |
| 13 | 10 12 | syl | ⊢ ( ω ≼ 𝐴 → ( 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) ) |
| 14 | 1 13 | mtod | ⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |