This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harmonicubnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) | |
| 2 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑚 ∈ ℕ ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑚 ∈ ℕ ) |
| 4 | 3 | nnrecred | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑚 ) ∈ ℝ ) |
| 5 | 1 4 | fsumrecl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ∈ ℝ ) |
| 6 | flge1nn | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℕ ) | |
| 7 | 6 | nnrpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ+ ) |
| 8 | 7 | relogcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( log ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ ) |
| 9 | peano2re | ⊢ ( ( log ‘ ( ⌊ ‘ 𝐴 ) ) ∈ ℝ → ( ( log ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) ∈ ℝ ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( log ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) ∈ ℝ ) |
| 11 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ ) | |
| 12 | 0red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 0 ∈ ℝ ) | |
| 13 | 1re | ⊢ 1 ∈ ℝ | |
| 14 | 13 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 1 ∈ ℝ ) |
| 15 | 0lt1 | ⊢ 0 < 1 | |
| 16 | 15 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 0 < 1 ) |
| 17 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 1 ≤ 𝐴 ) | |
| 18 | 12 14 11 16 17 | ltletrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 0 < 𝐴 ) |
| 19 | 11 18 | elrpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → 𝐴 ∈ ℝ+ ) |
| 20 | 19 | relogcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 21 | peano2re | ⊢ ( ( log ‘ 𝐴 ) ∈ ℝ → ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 23 | harmonicbnd | ⊢ ( ( ⌊ ‘ 𝐴 ) ∈ ℕ → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ∈ ( γ [,] 1 ) ) | |
| 24 | 6 23 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ∈ ( γ [,] 1 ) ) |
| 25 | emre | ⊢ γ ∈ ℝ | |
| 26 | 25 13 | elicc2i | ⊢ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ∈ ( γ [,] 1 ) ↔ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ∈ ℝ ∧ γ ≤ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ∧ ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ≤ 1 ) ) |
| 27 | 26 | simp3bi | ⊢ ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ∈ ( γ [,] 1 ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ≤ 1 ) |
| 28 | 24 27 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ≤ 1 ) |
| 29 | 5 8 14 | lesubadd2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) − ( log ‘ ( ⌊ ‘ 𝐴 ) ) ) ≤ 1 ↔ Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ≤ ( ( log ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) ) ) |
| 30 | 28 29 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ≤ ( ( log ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) ) |
| 31 | flle | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) | |
| 32 | 31 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 33 | 7 19 | logled | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ↔ ( log ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( log ‘ 𝐴 ) ) ) |
| 34 | 32 33 | mpbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( log ‘ ( ⌊ ‘ 𝐴 ) ) ≤ ( log ‘ 𝐴 ) ) |
| 35 | 8 20 14 34 | leadd1dd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → ( ( log ‘ ( ⌊ ‘ 𝐴 ) ) + 1 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ) |
| 36 | 5 10 22 30 35 | letrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑚 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ) |